

TSUBAKI Overload protection and control devices

Safety devices for protecting machinery from potentially damaging mechanical and electrical overload. Both mechanical and electrical types are available.

1

From safety mechanisms like Torque Limiter, Shock Guard and Shock Relay, to controlling devices like Torque Keeper and Shock Monitor, SAFCON provides your vital machinery with top-notch safety and control.

Contributing to device automation.

Torque Limiter Friction type

Shock Guard Separation type

Axial Guard Linear actuating type

Shock Relay Current type

TSUBAKI Safety and Control devices

Torque Keeper Mechanical type slipping clutch and brake

MINI-KEEPER Mechanical type slipping clutch and brake

Shock Monitor Electric type overload protection device and load sensor

SAFCON contributes to the protection and control

Starting with the examples below, SAFCON meets a wide range of industrial equipment safety and control needs.

Selection guide

Safety

Shock Guard

				TGB Series	TGE Series	TGX Series	TGF Series	TGM Series	TGZ Series	TGK Series	
Category	Machine		Protection, detection, applications				9				
Safety or Control		ntrol		۲			S				
	P	age		P21	P35	P41	P51	P63	P71	P79	
Trenewert	Crane	S	Overload protection for machine overload jamming etc.								
equipment	Hoist	S	Overload protection for machine overload, jamming, etc.								
oquipmont	Chain block	S	Overload protection for machine overload, jamming, etc.								
	Overhead convevor	S	Chain breakage protection								
	Overhead conveyor	S	Chain breakage detection								
	Belt conveyor	S	Belt breakage protection								
	Belt conveyor	S	Belt breakage detection								
	Chain conveyor	S	Chain breakage protection								
	Chain conveyor	S	Chain breakage detection								
	Roller conveyor	S	Roller axis damage protection	•	•		•	•			
	Screw conveyor	S	Screw damage protection								
	Bucket elevator	S	Prevents chain breakage due to bucket jamming								
	Industrial robot	S	Drive portion, pivot portion overload protection			۲					
Environmental	Garbage disposal equipment	S	Overload protection for garbage conveyor								
equipment	Water treatment equipment	S	Prevents chain breakage for scraper and dust collector								
	Water gate	S	Gate and rack damage protection	۲							
	Pump	S	Motor protection					•			
Pump	Compressor	S	Motor protection								
	Blower	S	Motor protection		-						
	Bag making and packaging machine	e S	Overload protection for film feeding and seal/pillow packaging machine cutter	۲	۲	۲					
Packaging	Cartoning machine	e S	Overload protection for workpiece conveyor and packaging equipment	۲	۲	۲	•	-		•	
machine	Vacuum packaging machine	S	Overload protection for workpiece conveyor, seal, and cutter	۲	۲	۲					
	Filling machine	S	Clutch function and overload protection for intermittent workpiece conveyor	•	•	0	•			۲	
Food	Flour mill	5	Overload protection for milling, mixing and sifting machine				•			•	
processing	Noodie-making machine	5	Overload protection for mixer and roller/extruder			•				•	
machine	Bakery equipment	0	Prevents chain breakage for termentation oven and cooler								
	Turning machine	0	Tip brook and detection	•	•	•	•			U	
	Machining	C	Drill wear detection								
Machine	Grinding machine	C	Grinding stope contact detection								
tools	Tanning machine	C	Tan breakage detection								
	Cutter	C	Saw contact detection								
	Chip conveyor	S	Prevents damage due to jammed chips								
Metal working	Press	S	Punch and transfer portion protection		•	۲					
machinerv	Casting	S	Overload protection for conveyor unit	•	•	0					
Iron and steel	Rolling machine	S	Overload protection for conveyor unit	-	-						
	Injection molding machine	S	Screw and mold clamping protection			•			•		
Plastic	Extruding machine	S	Screw and gear protection								
machine	Gear pump for extruding machine	S	Gear and axis protection		•						
	Extruding machine	S	Heater wire breakage detection								
Tovtilo	Spinning machine	С	Winding-off portion tension control								
machine	Textile weaving loom	n C	Winding-off portion tension control								
	Winder	S	Protection of rocking arm driving servo motor for carbon fiber winder		•						
Printing	Printing machine	С	Printed material tension control								
machine	Book binder	S	Protects pressure portion and conveyor from overload damage		•		۲				
	Printer	С	Printed material tension control								
IT	Liquid crystal manufacturing device	e S	Conveyor unit overload protection			•					
	Semiconductor production device	S	Conveyor unit overload protection	•		•					
	Crusher	S	Crusher blade protection	-					•		
	Haw garbage processor	S	Mixing blade damage protection								
Others	Mixer	S	Mixing blade damage protection								
	Kneading machine	S	Mixing blade damage protection				•				
	Automotive testing machine	95	Lamage protection for torque measuring instrument for engine bench test machine				•				
	Can making machine	5	cluctri runction and damage protection for aluminum can pressing machine								
	Capper	0	Worknisses isomming detection								
	Stage device	0	Floor mochanism overload protection								
	Lighting over	0	Overweight detection for lifting devices								
	Lighting system	9	overweight detection for inting devices								

of a wide range of industrial equipment

Optimal

•:Recommended

								C	a n1			
Torque Limiter	Axial Guard			Sho	ck Relay			Torque Keeper	MINI- KEEPER	S	hock Monit	tor
TL Series	TGA Series	SC Series	ED Series	150 Series	SS Series	SA Series	SU Series	TFK Series	MK Series	TSM4000 Type	TSM4000 H1 Type	TSM4000 H2 Type
Contraction of the second								E				
P87	P97	P113	P124	P127	P131	P134	P137	P143	P155	P163	P169	P170
•		•	•		•	•				•	•	
•		•	•	•		•				•	•	۲
۲		•	۲		•	•	۲			•	•	
۲		•	۲		•	•	۲			•	•	
۲		0	۲	•	•	•	۲			•	•	
•		۲	0	•	•	•				•	•	
•	۲	•	•	•						•	•	•
-		•	•		•	•	۲			•	•	-
		•	•		•	•				•	•	
•	۲	•	•		•	•				•	•	
•		•	•		•	•				•	•	
•		•	•		٠	٠					•	
•	٠	•	•							•	•	
		•	•			•				•	•	•
		•	•			•				•	•	۲
•	۲	۲	۲		•	•				•	•	
•		•	•	•	•	-				•	•	
		•	•		•	•						
							۲		•			
								٢	•			
•	•	•	•		•	•		۲		•	•	
•		•	•		•	•		۲	۲	•	•	
•		•	•		•	•				•	•	
•		•	•		•	۲				•	•	۲
•		•	•							•	•	۲
		•	•		•	•				•	0	

Application Safety

Providing optimal overload protection

TSUBAKI mechanical and electrical safety devices provide overload protection for various applications.

Due to cutting the peak load, overload does not occur. Excessive power to the loaded axis can be shut off.

All models are equipped with the start time function. Price stays same regardless of motor size.

TSM4000 Series

Application Control For controlling devices

Slipping clutch and brake

Because it is possible to use even with continuous slipping, it is ideal for braking, accumulation and dragging.

Power sensor

Preventitive device maintenance and automation can be realised by detecting minute overload variation for grindstone-work piece contacts, tool wear, crusher automatic operation, etc.

Safety Devices

Mechanical Type Shock Guard, Torque Limiter, Axial Guard

	Features, variation	p9 to p10
	Selection guide	p11 to p12
	Selection	p13 to p18
	Ordering method	p19 to p20
8	Shock Guard TGB Series	p21 to p34
9	Shock Guard TGE Series	p35 to p40
8	Shock Guard TGX Series	p41 to p50
	Shock Guard TGF Series	p51 to p62
	Shock Guard TGM Series	p63 to p70
8	Shock Guard TGZ Series	p71 to p78
8	Shock Guard TGK Series	p79 to p86
3	Torque Limiter	p87 to p96
	Axial Guard	p97 to p106

Features

Mechanical type safety devices

Shock Guard, Torque Limiter, Axial Guard

Mechanical safety device variation

In order to meet the diverse needs of our customers, we provide a wide range of mechanical safety products. Refer to the chart below to choose the functions and device characteristics that best suit your safety needs.

Product name	Shock Guard					
		TGB				
Function, capacity	Compact size (TGB08 to 16)	Medium size (TGB20 to 70)	Large size (TGB90 to 130)	With sprocket (TGB20 to 70)	TGE Series	TGF Series
Torque range [N · m]	0.294 to 11.76	9.8 to 1080	441 to 7154	9.8 to 1080	1.0 to 700	5.0 to 4900
Bore range [mm]	6 to 16	10 to 70	45 to 130	10 to 70	12 to 50	10 to 90
Repetitive motion torque accuracy	±10%	±10%	±10%	±10%	±5%	±5%
Backlash	None	Small	Small	Small	Small	Minimal
Reset method	Automatic	Automatic	Automatic	Automatic	Automatic	Automatic
Overload detection	TG Sensor	TG Sensor	TG Sensor	TG Sensor	TG Sensor	TG Sensor
Torque indicator	Yes	Yes	Yes	Yes	No	Yes
Exterior						

Product name		Shock	Torque Limiter	Axial Guard		
Function, capacity	TGX Series	TGM Series	TGZ Series	TGK Series	TL	TGA
Torque range [N · m]	1.7 to 784	1.5 to 902	2.4 to 451	15 to 392	1.0 to 9310	147 to 3430 (Load range[N])
Bore range [mm]	8 to 70	10 to 60	10 to 50	10 to 45	8 to 130	—
Repetitive motion torque accuracy	±5%	±5%	±10%	±5%	—	±15% (trip load)
Backlash	None	None	Small	Minimal	None ^{*1}	None
Reset method	Automatic	Automatic	External force (manual)	Automatic	Automatic	Automatic
Overload detection	TG Sensor	Limit switch	TG Sensor	Limit switch	Proximity switch, tachometer	TGA Sensor
Torque indicator	Yes	Yes	Yes	No ^{*2}	No	Yes
Exterior						

*1 Only for unidirectional operation.

2 Adjust the regulator pressure to adjust the torque.

The right mechanical type safety device for your particular needs is available. Using the chart below, select the device that is most right for your machines.

For machinery like positioning and indexing machines that require preciseness.

One position function		
TGB Series	Yes	
TGE Series	Yes	
TGX Series	Yes	
TGF Series	Yes	
TGM Series	Yes	
TGZ Series	Yes	
TGK Series	Yes	

Backlas	h
TGB Series	Small
TGE Series	Small
TGX Series	No
TGF Series	Minimal
TGM Series	No
TGZ Series	Small
TGK Series	Minimal

Repetitive motion torque accuracy		
TGB Series	±10%	
TGE Series	±5%	
TGX Series	±5%	
TGF Series	±5%	
TGM Series	±5%	
TGZ Series	±10%	
TGK Series	±5%	

Because of its unique construction, the drive and driven sides only mesh in one position. After tripping the Shock Guard resets and meshes in its original position.

Connecting clearance between drive side and driven side at normal operation.

Repetitive motion torque accuracy

This represents the deviation caused by repeated trips.

For the machine that you want to automatically reset after removing overload after trip

TGB Series	
TGE Series	
TGX Series	Automatic
TGF Series	reset
TGM Series	
TGK Series	

For the machine that you want to freely rotate after trip

TGZ Series	Complete
TGK Series	release

* In cases where the air pressure is zero for the TGK series

Automatic reset

After overload is removed, the overload detection function is reset automatically by inching either the drive or driven side.

After tripping, this function completely eliminates transmission of the drive side rotation to the driven side. While in the case of an automatic reset mechanism, the overrunning of the drive side after tripping prevents reset shock. This complete release function is best suited for a high speed rotation axis.

Arbitrarily shutoff the rotary power transmission as an ON-OFF clutch

TGZ Series	Reset by external force
TGK Series	In cases where the air pressure is zero

For the machine that is used in a highly humid environment

TGM Series

Sealed construction

The ON-OFF function.

Arbitrarily transmit or shutoff torque by external force.

Sealed construction using O-ring. Under normal usage conditions it is not necessary to refill the grease.

Selection

As a safety device, the Shock Guard will be most effective if it is installed in the place nearest to where overload is thought to most likely occur on the driven machine.

For most situations, avoid using the Shock Guard with human transportation or lifting devices. If you decide to use a Shock Guard with these devices, take the necessary precautions to avoid serious injury or death from falling objects.

1. Setting trip torque

$$T_{P} = T_{L} \times S.F = \frac{60000 \times P}{2\pi \cdot n} \times S.F |T_{P} = \frac{974 \times P}{n} \times S.F|$$

$$T_{P} = Trip \text{ torque } N \cdot m|kgf \cdot m| \qquad T_{L} = \text{Load torque } N \cdot m|kgf \cdot m|$$

$$P = Transmittance \text{ power } kW \qquad S.F = \text{Service factor}$$

$$n = rpm \qquad r/min$$

- (1)From the machine's strength and load, as well as other information, set the trip torque at the point where it should not go any higher.
- (2)When the limit value is not clear, calculate the rated torque by using the rpm of the shaft where the Shock Guard is installed and rated output power. Then, depending on the conditions of use, multiply by the service factor in Table 1.

Table1

S.F	Operating conditions
1.25	In the case of normal start up/stop, intermittent operation
1.50	In the case of a heavy shock load or forward-reverse driving

2. When rpm is relatively high

When rpm is relatively high (more than 500r/m), or when load inertia is large, depending on the motor's start up torque, there is a chance the Shock Guard will trip. In this case, determine the inertia ratio and calculate the torque used in the Shock Guard during start up, then multiply it by the service factor and make this the trip torque.

$$\begin{split} & K = \frac{I_{L} + I_{t}}{I_{s}} \left\{ K = \frac{GD_{t}^{*} + GD_{t}^{*}}{GD_{s}^{*}} \right\} Tt = \frac{K \cdot T_{s} + T_{L}}{1 + K} T_{p} = SF \cdot Tt \\ & K \qquad : Inertia \ ratio \end{split}$$

 I_s : Drive side moment of inertia(kg·m²)

 $\{GD_{s}^{2}: Drive side GD^{2}(kgf \cdot m^{2})\}$

I_L : Load side moment of inertia(kg·m²)

Notes for Design

- * When selecting the size based on the torque, ensure that the preset torque is not more than 80% of the upper limit of the torque capacity of the Shock Guard. The reason for this is to allow a margin for readjustment considering the decline in torque attributable to wear after many years of use.
- * When using an induction motor or a similar device as the drive motor, consider the starting torque when determining the preset torque. Also, for machines that generate large vibrations, give consideration to these vibrations when setting the torque since the Shock Guard is activated in response to a momentary overload and consequently seems to be activated at a torque less than the calculated torque.
- * When using the Shock Guard for an intermittent drive such as an indexer and the difference between the preset torque and the normal peak torque is small, transmission balls oscillate due to load fluctuation during operation, which causes machine vibration and abnormal wear of the inside of the Shock Guard. Therefore, set the torque to the highest value possible that is within a range that does not damage the machine.

- $\{GD^{2}_{L} : Load side GD^{2}(kgf \cdot m^{2})\}$
- $I_t \qquad : Shock \ Guard \ moment \ of \ inertia(kg \cdot m^2)$
- $\{GD^{2}_{t} : Shock Guard GD^{2}(kgf \cdot m^{2})\}$
- T_s : Motor starting torque(N·m){kgf·m}
- $T_t \qquad : Torque \ in \ Shock \ Guard \ during \ start \ up(N \cdot m) \{kgf \cdot m\}$
- T_{L} : Load torque(N·m){kgf·m}
- T_{P} : Trip torque(N·m){kgf·m}
- S.F : Service factor
- Note) Use the equivalent value to the shaft in which the Shock Guard is installed for each moment of inertia, GD² and torque value.

3. Precautions when deciding trip torque

Compared with load torque, if the torque used when starting up becomes large, the setting trip torque value also becomes large, causing a problem from the viewpoint of the overload protection device. (Compared with the load torque, the trip torque is too large.) In this case install it as close to the load side as possible.

4. Choosing the model number

Choose a model where the calculated trip torque is within the minimum to maximum setting range.

5. Verifying bore diameter

Verify that the shaft where the Shock Guard will be installed is in the possible range (refer to the dimensions table) of the bore diameter of the Shock Guard model you selected.

If the shaft diameter is larger than the possible bore range, select a model one size larger that uses a weak spring.

6. Confirming rpm

Confirm that the Shock Guard rpm used is within the maximum rpm value in this catalog.

* Driving method

When using the Shock Guard with a V pulley or timing pulley, confirm that the radial load caused by belt tension does not exceed the permissible load. Contact us if the load exceeds the permissible load.

* Coupling

Select the appropriate type according to your use conditions after checking whether the allowances are satisfied.

* Reset speed

The reset speed should be as low as possible. The appropriate reset speed depends on factors such as the inertia of the driven machine, elasticity of the drive machine, and selected torque of the Shock Guard, but 50 rpm or less is sufficiently low for the reset speed in most cases. If low speed reset is impossible, perform inching operations.

 \triangle Do not reset the main unit or shaft of the Shock Guard by turning it by hand. Doing so is dangerous.

Usable sprocket minimum number of teeth

For sprocket machining dimensions, refer to the description pages of each series.

TGB Series

Madal No.			Spr	ocket minimur	n number of te	eeth		
WODELINO.	RS40	RS50	RS60	RS80	RS100	RS120	RS140	RS160
TGB08-L,M,H	14	12	13(10)					
TGB12-L,M,H	16	13	13(11)					
TGB16-L,M,H	18	15	14					
TGB20-H	26	22	19	15	13	13(11)		
TGB30-L,H	32	26	22	18	15	13		
TGB50-L,M,H	45(43)	35	30	24	20	17		
TGB70-H	60(58)	48(47)	40	32(31)	26	24(22)		
TGB90-L,H		62	52	40	33	28	25	22
TGB110-L,H		74	62	48	39	33	29	26
TGB130-L,H		83	70	53	43	37	32	29

* The numbers of teeth in parentheses are not those of standard A-type sprockets. Whenever possible, use sprockets with a larger number of teeth.
 * The above are the smallest possible installable sprockets. Sprocket transmissible power is not considered,

so refer to TSUBAKI drive chain catalog for more information on sprocket selection and handling.

TGE Series

$\langle Type 1 \rangle$

Model	S	Sprocket mi	nimum num	nber of teet	h
No.	RS35	RS40	RS50	RS60	RS80
TGE17-1	18	14	12	—	—
TGE25-1	25	20	17	15	12
TGE35-1	32	25	20	18	14
TGE50-1	_	31	26	22	17

(Type 3)

Model	S	Sprocket mi	nimum nun	nber of teet	h
No.	RS35	RS40	RS50	RS60	RS80
TGE17-3	23	18	15	—	—
TGE25-3	32	25	21	18	14
TGE35-3	39	30	25	21	17
TGE50-3	—	40	33	28	22

TGM Series

Madal Na			Spr	ocket minimur	n number of te	eth		
WOUELINO.	RS25	RS35	RS40	RS50	RS60	RS80	RS100	RS120
TGM3	*30	22	17	15				
TGM6	*30	22	17					
TGM20	*34	24	19	16	14			
TGM60		*32	26	21	18	15		
TGM200			*37	30	26	20	17	
TGM400				*41	35	*27	24	20
TGM800				*41	35	*27	24	20

* The numbers marked with * are not standard numbers of teeth.

(Note) Determine the number of teeth after checking the transfer capacity of the chain.

(Note) Insert the joint link from the outside of the sprocket.

TGZ Series

Model No.			Sprocket minimum number of teeth													
WOUELINO.	RS25	RS35	RS41	RS40	RS50	RS60	RS80	RS100	RS120	RS80						
TGZ20L,M,H	(51)	(35)	(28)	30(29)	24(23)	20	16	13	13	_						
TGZ30L,M,H	(62)	(43)	(33)	35(33)	30(27)	24(23)	18	16	14	17						
TGZ40L,M,H		(54)	(41)	45(41)	35(34)	30(24)	24(23)	19	16	17						
TGZ50L,M,H		62	48	48	40(39)	35(33)	26	21	18	22						

* The numbers of teeth in parentheses are not those of standard A-type sprockets. Whenever possible, use sprockets with a larger number of teeth.

TGK Series

Model No		Sprocl	ket minimum number o	f teeth	
WOUELINO.	RS35	RS40	RS50	RS60	RS80
TGK20	30	24	20	17	—
TGK30	37	29	24	20	16
TGK45	50	38	32	27	21

Maintenance

1. Shock Guard (TGB)

Lightly coat the balls and bearings with grease once per year or every 1,000 trips.

Grease

EMG Marketing	Showa Shell	ldemitsu	JX Nippon Oil & Energy	Cosmo Oil
Mobilux EP2	Alvania EP Grease 2	Daphne Eponex Grease EP 2	Epinoc Grease AP(N)2	Cosmo Dynamax EP Grease 2

2. Coupling portion(TGB20-C to TGB130-C)

• Coat the roller chain and sprocket with grease once per month. Use the same grease for the Shock Guard.

3. Sprocket portion

- For more information on sprocket and roller chain maintenance, refer to TSUBAKI drive chain catalog.
- If operating with a sprocket and roller chain for a long period of time, even if the trip frequency and number of times is very low, it is possible for the sprocket to wear. Inspect the sprocket for wear on a regular basis. Refer to the TSUBAKI drive chain catalog for inspection procedures.

TG Sensor

The TG Sensor is a Shock Guard specific proximity switch system overload detecting sensor. After detecting Shock Guard overload (movement of plate in the axis direction), the motor can be stopped and the alarm can be signaled. It is of course possible to install the TG Sensor on other series' and sizes as well.

		AC Type	DC Type
1	Model no.	TGS8	TGS8D
Power	Rating	AC24 to 240V	DC12 to 24V
voltage	Range to be used	AC20 to 264V(50/60Hz)	DC10 to 30V
Currer	nt consumption	1.7mA and below(at AC200V)	13mA and below
Control output (o	opening and closing capacity)	5 to 100mA	Max. 200mA
Ind	licator lamp	Operation	n indicator
Ambient op	perating temperature	$-25 \text{ to } + 70^{\circ}\text{C}$	(does not freeze)
Ambient of	operating humidity	35 to 95% RH	
0	utput form	NC(When not detecting the sensor plate, or	utput opening and closing state is displayed)
Ope	eration mode	_	Open collector
Insula	tion resistance	More than 50M Ω (at DC50V megger) In	between the energized part and the case
	Mass	Approx. 45g (with 2m code)	
Res	idual voltage	Refer to characteristic data	Less than 2.0V (load current 200mA/code length 2m)

Dimensions Diagram

TG Sensor Handling * Do not swing, excessively pull or strike the detecting portion with an object.

Overload detection(TG Sensor handling)

• The detecting distance of a TG Sensor is 1.5mm. Set the Shock Guard at non-trip condition with the dimensions (s, t) in the chart below. · Install the TG Sensor with the Shock Guard at the tripped position. Then, while rotating the Shock Guard by hand, verify that the TG Sensor is functioning (LED at the side is lighting) and there is no interference with the plate. Finally, reset the Shock Guard .

Shock Guard

• Installation diagram TGX10 to 70

		I	Unit: mm									
Dimension Type	s	t	Displacement of plate									
TGX10	29.9	1.2	1.4									
TGX20	28.3	1.2	1.6									
TGX35	29.5	1.2	2.0									
TGX50	35.6	1.2	2.6									
TGX70	34.5	1.2	3.5									
Note) The TG sensor can only be attached to the Shock												

 Installation diagram TGZ20 to 50 Unit: mm Dimensior Displacement s t of plate Type TGZ20 9.5 1.2 4.1 **TGZ30** 10.2 1.2 4.7 **TGZ40** 15 1.2 5.9 TGZ50 12.2 1.2 7.0

Selecting overload and wiring information (AC type for TGS8)

• Connecting to a power source

Make sure to connect via load. A direct connection will damage the internal elements.

· Using a metal pipe to prevent malfunction/damage

In order to prevent malfunction or damage, insert the proximity switch code inside a metal pipe when it runs close to the power cable.

Surge protection

The TG Sensor has built-in absorbing circuits, but when the TG Sensor is used near a device such as a motor or arc welder where a large surge occurs, make sure to insert a surge absorber such as a varister in the source.

Influence of consumption (leakage) current

Even when the TG Sensor is OFF, in order to keep the circuits running, a small amount of current flows as current consumption. (Refer to the Consumption (leakage) Current graph) Consequently, because there is a small amount of voltage on the load, it may cause the occurring load to malfunction when resetting. Before using the sensor, confirm that this voltage is less than the load reset voltage. As well, when using the relay as load, be aware that due to the relay's construction when the leakage current is OFF, a buzz will sound.

When power supply voltage is low

When power supply voltage is smaller than AC48V and load current is less than 10mA, the output residual voltage when the TG Sensor is ON will become large, and the load residual voltage will become large when it is OFF. (Refer to the Load Residual Voltage Characteristics graph.) Take note of operating voltage load when using a relay, etc.

Load Residual Voltage Characteristics

Load residual voltage characteristics AC100V

• When load current is small

When load current is less than 5mA, load residual voltage becomes large in the TG Sensor. (Refer to the Residual Voltage Load Characteristics graph.) In this situation, connect the breeder resistance and load in a parallel formation like in the diagram below. If load voltage is above 5mA make residual voltage less than load reset voltage. The breeder resistace value and allowable power are calculated using the below calculation. To be on the safe side, it is recommended to use $20k\Omega \ 1.5W \ (3W)$ and above at AC100V, $39k\Omega \ 3W \ (5W)$ and above at AC200V.

* When the effect from heat build up becomes a problem, use the wattage in () and above.

The large inrush current load

A load with large inrush current such as a lamp or motor can cause damage or deterioration to open c lose elements of the sensor.Inthistypeof situation, use the sensor via a relay.

• Consumption (leakage) Current Characteristics

Ordering method

Shock Guard TGB Series

Features

Easy to operate and reasonably priced. This standard model can be used with a broad range of applications.

Wide variety of sizes available

From 0.294N \cdot m {0.03kgf \cdot m} to 7154N \cdot m {730kgf \cdot m}, 58 sizes are available.

Automatic reset

After removing the cause of overload, the TGB Series automatically re-engages by rotating the drive side.

One position type

The balls and pockets, which transfer the torque, are engaged only in one position because of the unique structure.

Easy torque adjustment

By simply turning the adjustment nut (bolts), trip torque can be easily adjusted.

Compact and precise

(TGB08 to 16) Ideal for use in compact motors, robots, and compact precision machines.

Non-backlash

TGB08 to 12 only. However, backlash may occur in the coupling portion for the coupling type.

SAFCON

Torque transmission is carried out using several balls. The nonsymmetric arrangement of the balls and pockets allows only one engagement position. As well, there is no backlash due to non-clearance engagement between the retained and pressured balls and pockets. Torque is transmitted from the center flange pockets) \rightarrow drive balls \rightarrow hub (pockets) \rightarrow shaft. (As well as the opposite) When the TGB Series trips due to overload, the ball pops out of the center flange pocket and it slides between the plate and center flange. Torque transmission is carried When it trips out using several balls. The the ball pope pocket and r plate and hub only one engagement position. When trippin Torque is transmitted from the center flange \rightarrow drive balls \rightarrow the bearings, hub (pockets) \rightarrow shaft. (As well as the opposite)

When it trips due to overload, the ball pops out of the hub pocket and rolls between the plate and hub.

When tripping, the rotational portion is entirely received by the bearings, so it rotates lightly and smoothly.

Shock Guard

Transmissible Capacity/Dimensions

Note: One lock screw for fastening the adjustment nut is included with the Shock Guard. After setting to the optimal torque, tighten either lock screw with the torque amount given below. Lock screw size: M5...3.8N·m[38.7kgf·cm]

																			Un	it : mm
Model No.	Set rc N	torque ınge √∙m	N	\aximum r∕min	Sprin	ıg color	Rough bore diamete * 1	Mir er b dia	nimum oore meter	Maxir bor diam	num e eter	А	В	С	D	E	F P.C.D	G	Н	I
TGB08-L	0.29	to 1.4	7		Ye	ellow														
TGB08-M	0.78	to 2.1	6	1200	В	Blue	5	6		8		39	6.5	5	20	40	34	26	33	—
TGB08-H	1.17	to 2.9	4		Or	ange														
TGB12-L	0.68	to 2.9	4		Ye	ellow														
TGB12-M	1.96	to 4.9		1000	В	Blue	6		7	12	2	47	8	6	23.5	48	40	32	40	—
TGB12-H	2.94	to 5.8	8		Or	ange														
TGB16-L	1.47	to 4.9			Ye	ellow														
TGB16-M	2.94	to 7.8	4	900	В	Blue	7		8	16	b	56	8.5	8	27.7	58	50	39	48	_
TGB16-H	5.88	to 11.	76		Or	ange														
TGB20-H	9.8	to 44		700	Or	ange	8		9	20)	47	7.5	5.7	25	90	78	62	82	54
TGB30-L	20	to 54		500	Ye	ellow	10		14	20	`	40	0.5	7	22	112	100	00	104	75
TGB30-H	54	to 167	7	500	Or	ange	ΙZ		14	30	,	00	9.5	/	33	115	100	02	100	/5
TGB50-L	69	to 147	7		Ye	ellow														
TGB50-M	137	to 412		300	В	Blue	22		24	50		81	14.5	8.5	44.8	160	142	122	150	116.7
TGB50-H	196	to 539			Or	ange														
Model No.	J	K	L	м	Ν	O scre diame × pite	ew Ps eter dia ch ×I	crew meter ength	Q sc diam ×ler	rew neter ngth	S		T	W		x	Snap ring size Y	Mass kg*²	Moment of × 10 ⁻²	of inertia ^{*2} kg∙m²
TGB08-L TGB08-M TGB08-H	29.5	15		M 3	3	M15×	1 M3	× 4	_	_		-	0.9	_			_	0.14	0.0	025
TGB12-L TGB12-M TGB12-H	35	20	_	M 4	3	M20×	1 M2	× 6	_	_		-	1	_		_	_	0.24	0.0	065
TGB16-L TGB16-M TGB16-H	46	25		M 4	3	N25×	1.5 M5	× 6	_	_		-	1.2	_		_	_	0.44	0.0	18
TGB20-H	48	32	30	M 5	4	$M32 \times$	1.5 M5	× 6	$M4 \times$	< 8	2		1.8	5	2		32	0.9	0.0	58
TGB30-L TGB30-H	65	45	42.5	5 M 6	6	M45×	1.5 M5	× 6	M4×	< 10	2		2	6	2	.5	45	2	0.2	
TGB50-L TGB50-M TGB50-H	98	75	70	M 8	6	M75×	2 M5	×10	M4×	< 14	3		2.7	8	3	.5	75	5.9	1.2	1

*1. All the models are in stock.

SAFCON

																	Un	it : mm	
Model No.	Set tor ranç N·r	rque ge m	Maximum r/min	Disk sj col	pring or	Rough bore diameter * 1	Minimu bore diamet	um Maxim bore ter diame	um e ter	А	В	С	D	E	F P.C.D	G	Η	I	
тбв 70-н	294 to	1080	160	Orai	nge	32	35	35 70		110 14		12	68.5	220	200	170	205	166	
TGB 90-L	441 to	1320	100	Yello	wc	40		00		167	05	22	00.4	205	045	004	200	010	
TGB 90-H	931 to	3140	120	Orar	nge	42	44	90		157	23	ZZ	88.0	293	205	230	290	213	
TGB110-L	686 to	1960	100	Yello	wc	50	E A					0.5	105	255	205	007	245	070	
TGB110-H	1570 to	5100	100	Orar	nge	52	54	110		142	30	23	105	300	325	287	345	278	
TGB130-L	1176 to	3038	00	Yello	wc	40	40	120		220	25	07	120	100	240	210	200	214	
TGB130-H	2650 to	7154	80	Orar	nge	80	02	130		220	30	27	130	400	300	319	390	310	
Model No.	J	К	L	Μ	Ν	O sc diam ×pi	rew eter c tch	P screw diameter ×length	Q dia ×	screw ameter length	r S	Т	U dia ×	screw ameter length	Snap ring size Y	Mas kg *2	S Momer × 1 C	tt of inertia ^{*2}) ^{*2} kg⋅m²	
TGB 70-H	157	110	106	M10	6	M110	0×2	√ 5×10	M10×28		8 3	3.	3 —		110	10 17		6.3	
TGB 90-L	202	120	124	AA10	0	M120		A10 × 20		111110		5			120	27	5 4	22.0	
TGB 90-H	203	130	124	IN I Z	0	////30		/10 ^ 20	/// 1	0 ^ 3.	5.5		4 ///0	5 ~ 10	130	57		33.0	
TGB110-L	244	140	155	MA14	4	NA140			140	40	4	01							
TGB110-H	200	100	100	110	0	//// 00	J ^ 3 N	/112 ^ 20	/// 1	0 ^ 43		0	1/1/1	0 ^ 20	100	09.0		7	
TGB130-L	204	100	104		0	M100		A16 v 20					(M10 × 0 f		100	102	1	47	
TGB130-H	304	190	104	1110	0	///190	J ^ 3 N	×3 M16×30		M20×60 7		0.		<u>ک</u> ۸ ۵4	190	102		07	

*1. The models written in bold letters are in stock, and those in small letters are made to order.

Transmissible Capacity/Dimensions

																			Uni	t : mm
	Set	torque		Maximum	Spring	Sho	ock Gu	Jard	0	Coupli	ng									
Model No.	ro	ange	1	r/min	color	Rough bore	Minimum bore	Maximum bore	Rough bore	Minimum bor	e Maximum bore	A	В	С	D	E	F	G	Н	
TCBOSIC	0.20	N.W.	47		Vallaur	diameter	diameter	diameter	diameter "	diameter	diameter									
TGB08-LC	0.29	$\frac{7101.}{2102}$	4/	1200	Blue	5	6	Q			15	80	20 6	30	10			115	24	22
TGB08-MC	1 17	7 to 2	01	1200		5	0	0	_		15	00	20.0	57	17			44.5	24	55
TGB12-IC	0.68	$\frac{10 2}{10 2}$	94 97		Vellow															
TGB12-MC	1.96	5 to 2	9	1000	Blue	6	7	12			20	88	199	<i>4</i> 7	23.5			53.6	32	40
TGB12-HC	2.94	1 to 5.	, 88	1000	Oranae	Ŭ	Ĺ	12			20			-17	20.0			00.0	02	40
TGB16-LC	1.47	7 to 4.9	9		Yellow															
TGB16-MC	2.94	1 to 7.	84	900	Blue	7	8	16	_		25	112	27	56	28.3			64.3	38	48
TGB16-HC	5.88	3 to 11.	.76		Orange	1														
TGB20-HC	9.8	8 to 44		700	Orange	8	9	20	12.5	14	42	76	25	47	25	32.6	7.4	117.4	63	82
TGB30-LC	20) to 54	Ļ	500	Yellow	12	14	30	1.0	20	19	03	20	60	33	10 5	07	1467	73	106
TGB30-HC	54	1 to 16	7	500	Orange	12	14	50	10	20	40	75	20	00	55	40.5	7./	140.7	/3	100
TGB50-LC	69	9 to 14	.7		Yellow	1														
TGB50-MC	137	′ to 41	2	300	Blue	22	24	50	18	20	55	126	40	81	44.8	51	11.6	200.3	83	150
TGB50-HC	196	o to 53	9		Orange															
Model No	I	к		M×N×No	of O scre	ew P s	screw	Q scr	ew	R	s	т	W			Couplii	ng	Mass I	Moment $\times 10^{-2}$	of inertia
Model 140.	5		-	pieces	× pito	$h \times I$	ength	×len	gth	IX .	Ũ					or sproc	ket	*2	*	2
TGB08-LC																				
TGB08-MC	29.5	15	—	M3×12ℓ	×3 M15×1		—	-		7.2	13.2	0.9		-	-	L075/	4	0.235	0.0	05
TGB08-HC																				
TGB12-LC	07	~~								7.0	10.0								~ ~	100
IGB12-MC	3/	20		M4×16ℓ	×3 M20×		_			7.9	13.2	I	_	-	-	1090/	4	0.38	0.0	123
TGB12-HC																				
TGB16-MC	16	25		M4×200	×3 M25×1	5				10.2	18.8	12				1100	A	0.673	0.0	321
TGB16-HC	40	25		1014/201	NJ 1012JA	.5	_			10.2	10.0	1.2			_	1100/		0.07 5	0.0	524
TGB20-HC	54	48	30	M5×12ℓ	×4 M32×1	.5 M4	4× 8	M5×	6	4	2	1.8	5	2		RS40-2	26	2.5	0.3	13
TGB30-LC	75		10.1	-			410		,	-	0	0	,		-		~	10	0.0	10
TGB30-HC	/5	65	42.5	M6×16ℓ	×6 M45×	.5 M	4×10	M5×	6	5	2	2	6	2.3	5	KS20-2	26	4.8	0.9	48
TGB50-LC																				
TGB50-MC	116.7	98	70 5	5 M8×20ℓ	×6 M75×2	2 M4	4×14	M5×	10	5	3	2.7	8	3.3	5	RS60-3	30 1	2.2	4.4	3
TGB50-HC																				

*1. All the models are in stock.

SAFCON

																	Unit	t : mm
Model No.	Set torque range	Maximum	Spring	She	ock Gua	ard Maximum bara	(Couplin	g Maximum hara	А	В	С	D	E	F	G	н	I
	IN · m	r/min	color	diameter	diameter	diameter	diameter	diameter	diameter									
TGB 70-HC	294 to 1080	160	Orange	32	35	70	28	30	75	165	45	110	68.5	64.8	15.3	283.2	107	205
TGB 90-LC	441 to 1320	120	Yellow	12	44	90	22	35	103	212	80	157	88.6	78.5	18.2	301 1	147	200
TGB 90-HC	931 to 3140	120	Orange	42		/0	55	55	105	242	00	13/	00.0	/0.0	10.2	574.4	147	2/0
TGB110-LC	686 to 1960	100	Yellow	52	54	110	28	40	113	303	100	195	105	00 2	21.0	173 1	157	345
TGB110-HC	1570 to 5100	100	Orange	52	54	110	50	40	115	505	100	175	105	77.2	21.7	4/ 3.4	13/	545
TGB130-LC	1180 to 3038	80	Yellow	60	62	130	53	55	145	365	120	230	130	1273	20 1	5312	107	300
TGB130-HC	2650 to 7154	80	Orange	00	02	130	55	55	145	303	120	230	130	127.5	27.1	554.2	177	370

Model No.	J	К	L	M×N×No. of pieces	O screw diameter × pitch	P screw diameter × length	Q screw diameter × length	R	S	Т	U screw diameter × length	Sprocket	Mass kg	Moment of inertia ×10 ^{.2} kg·m ²			
TGB 70-HC	166	157	106	M10×25 ℓ ×6	M110×2	M10×28	M 5×10	10	3	3.3	_	RS80-32	32.0	22.43			
TGB 90-LC	212	202	124	M12×25 0 × 0	M120×2	M14×25	M10×20	5	5.5	5 4	M 0 14	DC100 24	71.1	117.22			
TGB 90-HC	213	203	5 124	124	124	124	M12~35 £ ~0	INTIGO X Z	MI0×33	10/20		5.5	5.4	M 0×10	K3100-30	/1.1	117.52
TGB110-LC	270	244	155		M140×2		M12×20	0	7	4	M10×20	00100.04	120 5	21415			
TGB110-HC	2/0	200	155	M10~43 L ~0	M100×3	M10~4J	////2/20	0		0	MI0~20	K3120-30	130.5	514.15			
TGB130-LC	214	204	104	$M14 \times 50.0 \times 9$	M100×2	M20×40	M14×20	1.5	7	4.4	M12×24	DC140 20	202.2	422.44			
TGB130-HC	310	304	304 184	184 MI6×50 L×8	M170×3	M20×60	M16×30	15	7 6.6	M12×24	K3100-30	202.3	632.66				

*1. The models written in bold letters are in stock, and those in small letters are made to order.

Transmissible Capacity/Dimensions

Note: One lock screw for fastening the adjustment nut is included with the Shock Guard. After setting to the optimal torque, tighten either lock screw with the torque amount given below. Lock screw size: M5...3.8N.m{38.7kgf.cm} M8...16N.m{163kgf.cm} Unit : mm

Model No.	Set torque range N∙m	Maximum r/min	Sprocket specifications	Disk spring color	Rough bore diameter	Minimum bore diameter	Maximum bore diameter	А	В	С	D	E	F P.C.D	G	Н	I
	9.8 to 11	700	RS40-22T	Orange	8	0	20	47	5.0	7.2	25	96	89.24	40	82	54
IGB20-II-	7.01044	700	RS40-27T			/	20	4/	J.7	1.2	20	116	109.4	02		54
TGB30-L-	20 to 54	500	RS60-19T	Yellow	12	14	30	60	1 8	11 4	33	126	115.74	82	104	75
TGB30-H-	54 to 167	500	RS60-24T	Orange	14	50	00	4.0	11.0	55	156	145.95	02		/5	
TGB50-L-	69 to147		RS80-20T Y	Yellow			50	81	8.42		44.8	176	162.37			
TGB50-M-	137 to 412	300		Blue	22	24				14.5				122	150	116.7
TGB50-H-	196 to 539	1	RS80-25T	Orange	Ī							216	202.66			
	201 += 1090	140	RS100-22T	Orange	22	25	70	110	00	17.5	40 5	240	223.10	170	205	166
IGB/0-H-	294 to 1080	160	RS100-26T		32	35	/0	110	0.9	17.5	00.5	281	263.40	170	205	

Model No.	J	К	L	O screw diameter xpitch	P screw diameter ×length	Q screw diameter xlength	S	Т	W	Х	Snap ring size Y	Mass kg	$\begin{array}{c} \text{Moment of inertia} \\ \times 10^{\cdot 2} \text{kg} \cdot \text{m}^2 \end{array}$
TGB20.H.	48	32	30	M 32 × 1.5	M5 × 6	M 4 × 8	2	1.9	5	2	32	0.94	0.255
	40	52	50	W 32 ~ 1.5	1413 ~ 0	M 4^ 0	2	1.0		2	52	1.15	0.486
TGB30-L-	45	45	12.5	M 45×1.5		$M \to 10$	2	2	4	2.5	45	2.21	1.06
TGB30-H-	05	45	42.5	M 43 ^ 1.5	MJ × 0	//// 4 ^ 10	2	2	0	2.5	45	2.78	2.07
TGB50-L-												6.35	6.10
TGB50-M-	98	75	70	M 75×2	M5×10	M 4×14	3	2.7	8	3.5	75		
TGB50-H-												7.66	10.7
	157	110	104	M110×2	$M5 \times 10$	M10 × 29	2	2.2			110	17.8	29.4
IGB/U-H-	157		100	MITO ~ 2	M3 ~ 10	///// 20	3	3.5		_		19.9	42.5

*1. All products have a short delivery time.

2. Specify the preferable sprocket size.

3. Mass and moment of inertia are based on the bores' maximum diameters.

4. Sprocket specifications go in the box at the end of the model number. As well, refer to the below chart for Model No.

Model No. TGB 50 - H - 08025 - 50 J -Series Size Sprocket model No.

Spring strength L=weak spring M=medium spring H=strong spring

Sprocket mounting method A : Adapter B : External No mark = Central

Set torque value is displayed as a gravitational system of units 294N·m {30kgf·m} (Only when set torque is indicated)

Key way (J=new JIS standard,

30

E= old JIS 2 type)

Sprocket Indication Method

Model No.	Sprocket specifications	Indication of Model No.
TCP20	RS40-22T	04022
IGBZU	RS40-27T	04027
TOP20	RS60-19T	06019
IGESU	RS60-24T	06024
TCREO	RS80-20T	08020
IGBSU	RS80-25T	08025
TOPTO	RS100-22T	10022
19870	RS100-26T	10026

Finished bore measurements (only when finished bore is indicated)

SAFCON

TGB Serie

Shock Guard

Finished Bore Shock Guard TGB/Coupling Type TGB-C

Finished bore products can be made for quick delivery

Bores and keyways are already finished before delivery.

TGB20-TGB70 and TGB20-C-TGB70-C finished bore is standard

Finished Bore Dimension Chart

Finished	d Bore Din	nension Chart						
Shock Gu	uard TGB	Finished bore dimensions						
Shock Guard Model No.	Coupling Type Model No.	Shock Guard side	Coupling side (Coupling Type only)					
TGB20	TGB20-C	9,10,11,12,14,15,16,17,18,19,20	14,15,16,17,18,19,20,22,24,25,28,29,30,32,33,35,36, 38,40,42					
TGB30	TGB30-C	14,15,16,17,18,19,20,22,24,25,28,29,30	20,22,24,25,28,29,30,32,33,35,36,38,40,42,43,45,46, 48					
TGB50	TGB50-C	24,25,28,29,30,32,33,35,36,38,40,42,43,45,46,48,50	20,22,24,25,28,29,30,32,33,35,36,38,40,42,43,45,46, 48,50,52,55					
TGB70	TGB70-C	35,36,38,40,42,43,45,46,48,50,52,55,56,57,60,63,65, 70	30,32,33,35,36,38,40,42,43,45,46,48,50,52,55,56,57, 60,63,65,70,71,75					
Deliv	very	ExJapan 4 weeks by sea						

Shock Guard TGB			Shock G	uard Side	Coupling Side (Coupling Type only)			
	Shock Guard Model No.	Coupling Type Model No.	Set screw	Set screw position L1	Set screw	Set screw position L2		
Ī	TGB20	TGB20-C	2-M4× 4	4	2-M4× 4	8		
	TGB30	TGB30-C	2-M5× 5	5	2-M5× 5	10		
	TGB50	TGB50-C	2-M6× 6	6	2-M6× 6	12		
Ī	TGB70	TGB70-C	2-M8×12	6	2-M8×12	15		

1. Set screws are located at 2 positions, on the keyway and 90° CW from it.

Bore Diameter and **Keyway Specifications** · Bore diamter tolerance is as follows:

 ϕ 18 and below ……0 to +0.021mm

- ϕ 19 and above ……H7
- The keyway is new JIS (JIS B 1301-1996) "standard".
- · Set screws are included in the delivery

Bore diameter	Chamfer dimensions
ϕ 25 and below	C0.5
ϕ 50 and below	C1
ϕ 51 and above	C1.5

Shock Guard

• Roller chain and sprocket selection

For more information on roller chain and sprocket selection and handling, refer to the TSUBAKI drive chain catalog.

Sprocket specifications

Sprockets are hardened.

Sprocket lubrication

- For more information on sprocket lubrication, refer to the TSUBAKI drive chain catalog.
- If the Shock Guard is lubricated in an oil bath or by the rotary plate or forced pump, there is a possibility that the indicator and name sticker may come off.

Use of V pulley and timing pulley

• Confirm that the radial load caused by belt tension does not exceed the permissible load.

Installation example

Handling 1. Setting trip torque

- (1)TGB Shock Guards are all set at the "0" point (minimum torque value) for delivery. Confirm that the torque indicator is set at "0" when you receive the Shock Guard. (Refer to the diagrams for each size)
- (2)For the TGB70 to 130, loosen the three hexagon locknuts for adjusting bolts.

(The adjustment nuts of TGB08-50 can be turned as is.) (3)From the "Tightening Amount - Torque Correlation

Chart" (next page), find the adjustment nut's (bolt) tightening angle equivalent to the predetermined trip torque, and tighten them. Set at 60° toward the determined tightening value, then install to the machine and conduct a trip test. Gradually tighten and set at optimum trip torque. Each product's trip torque does not always correspond with the value listed in the "Tightening Amount - Torque Correlation Chart", so use them only as a rough guide.

- (4)For the TGB20 to 50, tighten one lock screw for the adjustment nut.
 - For the TGB70 to 130, use a hexagon nut to lock it. (The TGB08 to 16 adjustment nut is locked with a nylon coating.)
- (5)Do not turn the adjustment nut (bolt) more than the torque indicator's maximum value. Doing so will put it in a locked position, and there will be no leeway for the disk spring to bend when tripping. (TGB08-16 uses a coil spring)

SAFCON

3. Bore finishing

TGB08 to 16

- The hub's materials are made up of a surface-hardened iron based sintered alloy.
- Loosen the adjustment nut and disassemble all components. Make sure not to get any dust or dirt on the components.
- (2) Chuck the hub flange's outside diameter and center the hub portion. The hub's material is a surface-hardened iron based sintered alloy, so we recommend the cutting tool be made of a hard material (JIS 9-20, K-01).
- (3) Keyway machining should be carried out directly below the set screw tap.
- (4) After bore finishing is completed and when reassembling the Shock Guard, make sure to coat the drive ball and thrust bearings with grease.
- (5) For bore finishing, refer to the table and drawings below and make stepped bores.

Model No.	Bore diameter (ϕd)	Bore length (L mm)	Counterbore diameter (\phi D)
TGB08 TGB08-C	ϕ 6 and above ϕ 8 and below	20mm	φ11
70540	ϕ 7 and above less than ϕ 10	20mm	415
TGB12 TGB12-C	ϕ 10 and above less than ϕ 12	30mm	φισ
	φ12	Total length	N/A
	ϕ 8 and above less than ϕ 10	20mm	a 15
TGB16 TGB16-C	ϕ 10 and above less than ϕ 12	30mm	φισ
	ϕ 12 and above ϕ 16 and below	Total length	N/A

Table of bore lengths

TGB08 to 16

TGB08C to 16C

the center plate. Make sure not to get any dust or dirt on the components.

• The hub has been thermally refined.

TGB20 to 130

(2) Chuck the hub flange's outside diameter and center the hub portion.

(1) Loosen the adjustment nut and disassemble all components. Remove both the Snap ring for shaft and

- (3) Tapping for the set screws should be machined so they are spaced 90° from each other around the keyway.
- (4) After bore finishing is completed and when reassembling the Shock Guard, make sure to coat the drive ball and thrust bearings with grease.

4. Resetting

As it is an automatic reset system, just re-starting the drive side of the motor, etc., can automatically reset it.

- (1) When the Shock Guard trips due to overload, stop the rotation and remove the cause of the overload.
- (2) When resetting, reset (re-engage) with input rpm at less than 50r/min or by inching the motor.
- \triangle To avoid injury, do not reset the Shock Guard main unit or the shaft by hand.
- (3) A distinct clicking sound is made when the drive ball settles in its pocket.

SAFCON

Guard

Drive member selection and manufacture

A sprocket, gear and pulley can be installed in the Shock Guard to act as the drive member (center member). When selecting and manufacturing a drive member, refer to the precautions listed below.

(1)Use the outer diameter of the center flange as the spigot facing, and fix the drive member with bolts. Verify the diameter of the Shock Guard's spigot facing with that of the drive member.

Each spigot is as listed in the chart below.

			Unit : mm
Model No.	Spigot diameter	Model No.	Spigot diameter
TGB08-L,M,H	40(h8)	TGB50-L,M,H	160(h7)
TGB12-L,M,H	48(h8)	TGB70-H	220(h7)
TGB16-L,M,H	58(h8)	TGB90-L,H	295(h7)
TGB20-H	90(h7)	TGB110-L,H	355(h7)
TGB30-L,H	113(h7)	TGB130-L,H	400(h7)

(2)Center flange installation

• TGB08 to 16

The center flange's installation tap hole is penetrated. If the bolt's length is longer than the center flange, it will make contact with the plate. Make sure it does not stick out on the plate side.

Installation example TGB08 to 16(Externally-mounted sprocket (B))

Lock screw/tightening torque reference chart

Hexagon socket head screw	Tightening torque N · m{kgf · cm}
M5	3.8 {38.7}
M8	16 {163}

• TGB20 to 130

Bolt bore diameter

34

4.5

The center flange's installation tap hole is penetrated. If the the bolt's length is too long there may be contact with the sensor plate. The recommended bolt screw lengths are listed in the chart below.

			Unif : mm
Model No.	Bolt screw length	Model No.	Bolt screw length
TGB08-L,M,H	4	TGB50-L,M,H	9 to 11
TGB12-L,M,H	5	TGB70-H	13 to 15
TGB16-L,M,H	7	TGB90-L,H	23 to 25
TGB20-H	6 to 7	TGB110-L,H	26 to 28
TGB30-L,H	8 to 10	TGB130-L,H	28 to 30

(3)Refer to the chart below for drive member bolt diameters (JIS B1001-1985).

• Bolt bore diameter JIS B1001 - 1985 Unit : mm Nominal screw diameter 3 4 5 6 8 10 12 16

6.6

9

11

13.5

17.5

5.5

Series name	Drive member finishing dimensions					
	А	В	С	D	E	F
TGB08-L,M,H	34	3	3.4	40 _{H7}	28	3
TGB12-L,M,H	40	3	4.5	48 _{H7}	33	3
TGB16-L,M,H	50	3	4.5	58 _{H7}	41	3
TGB20-H	78	4	5.5	90 _{H7}	64	3
TGB30-L,H	100	6	6.6	113н7	84	4
TGB50-L,M,H	142	6	9.0	160 _{H7}	124	5
TGB70-H	200	6	11	220 _{H7}	172	5
TGB90-L,H	265	8	13.5	295 _{H8}	240	5
TGB110-L,H	325	6	17.5	355н8	292	5
TGB130-L,H	360	8	17.5	400 _{H8}	325	5

TGB20 to 50(Externally-mounted sprocket (B))

Precautions:

When re-tightening the lock screws that are once removed, make sure to take the following precautions:

- Confirm that the plug tip has not been removed. If a lock screw is used with a tipless plug, the hub's thread may be damaged or the hub's pocket may get jammed.
- 2. Confirm that the plug tip has not been heavily damaged. If a lock screw is used with a heavily damaged plug tip, the hub's thread may be damaged.

*If 1. or 2. is found to be the case, exchange the damaged parts with new ones.

Special specifications

1. With sprocket type

We accept orders for with the sprocket the type that are not included among our standard products. Contact TEM to help you with your selection.

2. Adapter specifications(A)

It is convenient to use sprockets and pulleys with a small outside diameter. Contact TEM for more information on the sprocket and pulley you will install.

3. Forward-reverse type

Depending on Shock Guard rotation direction, the trip torque set value can be changed. Contact TEM for more information.

TGB Series

MEMO	
	rd
	Shock Gua

Shock Guard TGE Series

(Ex-MYTORQ310 Series)

Features

Applicable to small-diameter sprockets and wide pulleys.

Easy torque adjustment

You only have to adjust the nut height to adjust the torque.

Quick boring

Products with standard bores are delivered in a short period of time.

Automatic reset

Thanks to automatic re-engagement, you only have to turn the drive side after removing the causes of overload.

One position type

The balls and pockets, which transfer the torque, are engaged only in one position because of the unique structure.

	TGE
Type 1	Applicable to small- diameter sprockets and wide pulleys.
Туре З	A general-purpose type on which A type sprockets and pulleys can be directly mounted.

Type 1

Type 3

With sprocket

Type 3 With sprocket

The TGE series transfers driving force from the hub to the drive plate on the output side via drive balls (and vice versa). Bolt a sprocket or timing pulley directly to the drive plate. The hub flange has several holes to hold the drive balls. There are pockets on the drive plate on the output side, and the

drive balls are pushed by coil springs via the thrust race to be fitted into the pockets to transfer the driving force.

If an overload occurs, the drive balls push the thrust race toward the coil springs and come out of the pockets of the drive plate while rotating to release the driving force.

Then, the cover moves toward the coil springs. Therefore, it is easy to stop the drive source automatically after the occurrence of an overload by detecting the amount of movement of the cover using a TG sensor or a similar device.

Resetting procedure

If you restart the operation after the occurrence of an overload, the drive balls automatically return to their positions within one revolution. If you continue to rotate the TGE series after the occurrence of an overload, the TGE series is repeatedly reset. Therefore, detect overloads using a TG sensor or a similar device and shutdown the drive source immediately.

Shock Guard

Transmissible Capacity/Dimensions

					Coil			S												
Model No.	Set torq	lue range	Max	. rpm	spring	Rough bore	Minimum bore	JIS keyway for ma	K. Half keyway for m	X. A	A4**	В	С	D	F	F1	G1	H1*5		
	IN	۰m	r/m	iin	number	diamter *2	diameter	bore dia.	bore dia.*3								P.C.D.			
TGE17-L1	1 to	o 5			2															
TGE17-M1	2 te	o 10	8	70	4	—	12	15	17	87	30	22.6	7.9	16.9	57	42	35	28		
TGE17-H1	4 te	o 20			8															
TGE25-L1	5 te	o 25			2															
TGE25-M1	10 te	o 50	5.	40	4	—	12	22	25	110	50	30.1	9.6	21	84	65.5	53	44		
TGE25-H1	20 to	o 100			8															
TGE35-L1	20 to	o 100	4		2															
TGE35-M1	40 te	o 200	4	30	4	—	17	32	35	140	85	30.1	9.6	30.5	105	84	69	55		
TGE35-H1	80 te	o 400			8															
TGE50-L1	30 to 200						10					.								
TGE50-M1	60 to	o 400	3	10	6		27	48	50	165	115	48	9.6	30.5	145	116	94	/5		
IGE50-HI	120 to 700		120 to 700		120 to 700		ΙZ													
					NL	D														
Model No.	I	J	L	Μ	diami × leng	ew P ter dia gth ×	ameter length	Q screw diameter ^{*6}	R*6		U	Mass kg⁺ [™]	Moment of kg ∙ m	inertia ^{2*7} ro	Allowable adial load	N I	Dry bear	ing		
Model No.	I	J	L	М	diami × lenç	ew P ter dia gth ×	ameter length	Q screw diameter ^{*6}	R*6		U	Mass kg ^{*7}	Moment of kg ∙ m	inertia ^{2*7} rc	Allowable adial load	e [N	Dry bear	ing		
Model No. TGE17-L1 TGE17-M1	۱ 25	J 70	L 56	M 26	diami × leng M4×	ew P ter dia gth ×	ameter length 4 × 10	Q screw diameter ^{*6}	R ^{*6}	5 1	U .6	Mass kg ^{*7} 0.84	Moment of kg · m 0.00	inertia ^{2*7} rc	Allowable adial load 6100		Dry bear	ing 20		
Model No. TGE17-L1 TGE17-M1 TGE17-H1	1 25	J 70	L 56	M 26	Max M4×	ew P ter dia gth ×	ameter length 4×10	Q screw diameter ^{*6}	R ^{*6} 7	5 1	U '	Mass kg ^{*7} 0.84	Moment of kg · m 0.00	inertia ^{2*7} ro 1 1	Allowable adial load 6100	N I	Dry bear #70B25	ing 20		
Model No. TGE17-L1 TGE17-M1 TGE17-H1 TGE25-L1	25	J 70	L 56	M 26	M4×	ew P ter dia gth ×	ameter length 4×10	Q screw diameter ^{*6}	R ^{*6} 7	5 1	.6	Mass kg ^{*7} 0.84	Moment of kg · m 0.00	inertia 2 ¹⁷ ro 11	Allowable adial load 6100	N I	Dry bear #70B25	ing 20		
Model No. TGE17-L1 TGE17-M1 TGE17-H1 TGE25-L1 TGE25-M1	1 25 40	J 70 98	L 56 70	M 26 36	M4×	ew P ter dia gth × 8 M 9 M	ameter length 4×10 4×10	Q screw diameter ^{*6} M4 M5	R ^{*6} 2 4 2 5 3	5 1		Mass kg*7 0.84 1.9	Moment of kg · m 0.007	inertia ^{2*7} rc 1 1 2 1	Allowable adial load 6100 12200		Dry bear #70B25 #70B40	ing 20 25		
Model No. TGE17-L1 TGE17-M1 TGE17-H1 TGE25-L1 TGE25-M1 TGE25-H1	1 25 40	J 70 98	L 56 70	M 26 36	M4×	ew P ter dia gth × 8 M 9 M	ameter length 4×10 4×10	Q screw diameter ^{*6} M4 M5	R*6 1 4 2 5 3	5 1	0	Mass kg* ⁷ 0.84 1.9	Moment of kg · m 0.007	inertia ^{2*7} rc 1 1 2 1	Allowable adial load 6100 12200	e I N I D	Dry bear #70B25 #70B40	ing 20 25		
Model No. TGE17-L1 TGE17-M1 TGE17-H1 TGE25-L1 TGE25-M1 TGE25-H1 TGE35-L1	1 25 40	J 70 98	L 56 70	M 26 36	M4×	ew P ter dia gth × 8 M	4×10 4×10	Q screw diameter** M4 M5	R*6 1 4 2 5 3	5 1		Mass kg ^{*7} 0.84 1.9	Moment of kg · m 0.007	inertia 2 ²⁷⁷ rc 111 211	Allowable adial load 6100 12200		Dry bear #70B25 #70B40	ing 20 25		
Model No. TGE17-L1 TGE17-M1 TGE17-H1 TGE25-L1 TGE25-M1 TGE25-L1 TGE35-L1 TGE35-L1 TGE35-M1	1 25 40 50	J 70 98 128	L 56 70 92	M 26 36 48	M4×	ew P ter dia gth × 8 M. 9 M. 16 M	ameter length 4×10 4×10 6×10	Q screw diameter** M4 M5 M5	R*6 T 4 2 5 3 5 4	5 1 2 2 2		Mass kg ^{*7} 0.84 1.9 3.5	Moment of kg · m 0.00 0.002	inertia ^{2'7} rc 1 1 2 1 5 4	Allowable adial load 6100 12200 12200		Dry bear #70B25 #70B40 #70B50	ing 20 25 20		
Model No. TGE17-L1 TGE17-M1 TGE25-L1 TGE25-M1 TGE25-H1 TGE35-L1 TGE35-M1 TGE35-H1	1 25 40 50	J 70 98 128	L 56 70 92	M 26 36 48	M4×	ew P ter dia gth × 8 M 9 M 16 M	ameter length 4×10 4×10 6×10	Q screw diameter** M4 M5 M5	R*6 1 4 2 5 3 5 4	5 1 2 2		Mass kg ^{*7} 0.84 1.9 3.5	Moment of kg · m 0.00 0.002	inertia 2*7 rc 1 1 2 1 5 4	Allowable adial load 6100 12200 12200		Dry bear #70B25 #70B40 #70B50	ing 20 25 20		
Model No. TGE17-L1 TGE17-M1 TGE25-L1 TGE25-M1 TGE25-H1 TGE35-L1 TGE35-H1 TGE35-H1 TGE50-L1 TGE50-L1	1 25 40 50	J 70 98 128	L 56 70 92	M 26 36 48	M4× M5×	ew P fer dia gth × 8 M 9 M 16 M	ameter length 4×10 4×10 6×10	Q screw diameter** M4 M5 M5	R*6 T 4 2 5 3 5 4	5 1 2 2 2		Mass kg ^{*7} 0.84 1.9 3.5	Moment of kg · m 0.001 0.002 0.002	inertia 2 ²⁷⁷ rc 1 1 2 1 5 4	Allowable adial load 6100 12200 12200		Dry bear #70B25 #70B40 #70B50	ing 20 25 20		
Model No. TGE17-L1 TGE17-M1 TGE25-L1 TGE25-M1 TGE25-H1 TGE35-L1 TGE35-M1 TGE35-H1 TGE50-L1 TGE50-L1 TGE50-L1	1 25 40 50 70	J 70 98 128 168	L 56 70 92 115	M 26 36 48 68	M4× M5× M8×	ew P fer dia 38 M 9 M 16 M	$\frac{1}{4 \times 10}$ 4×10 4×10 6×10 6×15	Q screw diameter [*] M4 M5 M5 M5	R*6 1 4 2 5 3 5 4 5 5	5 1 2 2 3		Mass kg ^{*7} 0.84 1.9 3.5 7.5	Moment of kg · m 0.00 0.002	inertia 2 ²⁷⁷ rc 1 1 2 1 5 4 1 5	Allowable adial load 6100 12200 12200 34300	• N 1 0	Dry bear #70B25 #70B40 #70B50 #70B50	ing 20 25 20 40		

*1. Contact us for details on use at speeds higher than the maximum speed.

2. Only center bore processing is available.

3. The half keyway dimension is the maximum bore diameter when the keyway depth is limited.

4. Contact us if an effective keyway length longer than the A4 dimension is required.

5. The H1 dimension is the machining dimension of the inner diameter of pulleys and sprockets (machining dimension tolerance of inner diameter H7).

 Standard stocks are not processed. Dimensions are for reference only (products are delivered with a setscrew inserted upon request for processing).

7. Mass and moment of inertia are based on the bores' maximum diameters.

Note) When in stalling a pulley or sprocket, use high-tensile bolts (G10.9 or higher) and determine the length carefully so that the bolts are not buried deeper than the mounting tap depth N.

Limitation of keyway depth

Model No.	S bore diameter	Keyway width	Keyway depth
TGE17	16-17	5	1.8
TGE25	24-25	7,8	2
TGE35	34-35	10	2.4
TGE50	49 - 50	12,14	2.2

Unit · mm

TGE Series

															, c					
Model No.	Set torque range Max. rpm N · m r/min ^{·1}			x. rpm 'min ^{*1}	Coil spring	Rough bore	Minimum bore	e JIS keyway for	S max.	Stando	ard bore	e diamete	r A	В	С	D	F	G P.C.D.		
					number	diamter *	diameter	bore dia.		(Ic	lerance	: H/) °								
TGE17-L3	11	to 5			2															
TGE17-M3	21	to 10	9	00	4	-	12	17		12	15	17	47	9	6	16.9	57	50		
TGE17-H3	41	to 20			8															
TGE25-L3	51	to 25			2															
TGE25-M3	10 1	to 50	9	00	4	10	12	25		20	22	25	60	13	9	21	84	75		
TGE25-H3	20 1	to 100			8															
TGE35-L3	20 1	to 100			2															
TGE35-M3	40 1	to 200	7	750	4	15	17	35		25	30	35	80	18	13.5	30.5	105	95		
TGE35-H3	80 to 400				8															
TGE50-L3	30 to 200		30 to 200				3													
TGE50-M3	60 to 400		60 to 400 57		570	6 25		27	50		40	45	50	95	20	15	30.5	145	130	
TGE50-H3	120 to 700			12																
Model No.	н	J	L	м	N scre diamte ×leng	w P er di th ×	screw amter length	Q screw diameter ^{*₄}	F	R*4	T	U	Mass kg⁺⁵	Moment of iner kg · m²*⁵	tia Allov radial	vable load N	Dry be	aring		
TGE17-L3																				
TGE17-M3	42	70	56	26	$M4 \times$	3 M4	4×10	M4	1:	5	2.5	1.6	0.56	0.0010	3	400	#690	5ZZ		
TGE17-H3	1																			
TGE25-L3																				
TGE25-M3	62	98	70	36	$M5 \times 1$	0 M4	4×10	M5	20	0	3	2.0	1.3	0.0016	7	500	#690	8ZZ		
TGE25-H3																				
TGE35-L3																				
TGE35-M3	80	128	92	48	M6×1	4 M	5×10	M6	20	6	4	2.4	2.6	0.0037	12	400	#601	OZZ		
TGE35-H3																				
TGE50-L3																				
TOEED M2	110	168	115	68	$M8 \times 1$	7 M	5×15	M8	3	1.5	5	32	51	0.0142	23	200	#601	4ZZ		
10E20-M2	110	100	115	00	1110				Ŭ		0	0.2	0.1	0.0142	20					

*1. Contact us for details on use at speeds higher than the maximum speed.

2. Only center bore processing is available.

3. The keyway dimension of a product with a standard bore complies with JIS B 1301, and the keyway width tolerance is Js9.

4. Standard stocks are not processed. Dimensions are for reference only.

5. Mass and moment of inertia are based on the bores' maximum diameters.

Note) When in stalling a pulley or sprocket, use high-tensile bolts (G10.9 or higher) and determine the length carefully so that the bolts are not buried deeper than the mounting tap depth N.

Products with a standard bore are delivered with a shaft-securing setscrew inserted. If you will not use the setscrew to secure the shaft, be sure to remove the setscrew from the hub (screw the setscrew to make it penetrate and come out of the hole).

Torque adjustment

 Read the nut height that corresponds to the required torque from the torque correlation charts and tighten the torque adjustment nut to that height (refer to the figure below). To tighten the torque adjustment nut, loosen the two setscrews, hook a hook spanner (sold separately, refer to the table on the right) on the notch in the periphery of the nut, and then turn the nut.

Hook sp	anner	wrench
---------	-------	--------

Size	TGE25	TGE35	TGE50
Spanner No.	FK-0070	FK-0092	FK-0105

2. When the torque is determined, write down the torque on the nameplate so that you can easily set the torque to the previous value even after an overhaul. If you mark matchmarks on both the nut and the edge of the hub, you can reset the torque more precisely.

Torque Correlation Chart

TGE Series

NEMO		

Shock Guard TGX Series

Features

Non-backlash. Provides superb rigidity during normal operation. Ideal for applications that require highly accurate positioning.

Highly accurate trip

The lost motion during trip is very small.

Non-backlash

Due to its innovative ball and wedge construction (PAT.), there is almost no backlash.

Coupling function

For the coupling, the ball and wedge mechanism absorbs the angle, parallel and axial displacement misalignment.

Easy torque adjustment

Just by turning the adjusting nut, trip torque can be freely adjusted.

One position

The unique assembly of the TGX Series means the ball and wedge configuration engages in only 1 position.

TG Sensor

Shock Guard

Ball and Wedge Mechanism

Torque transmission is transmitted from the hub \rightarrow drive ball \rightarrow driven flange. (As well as the reverse direction.)

Due to the force of the coil spring, the drive ball is retained in between the hub and driven flange, and the contact portion between the plate and the drive ball are tapered, and the clearance between the drive balls and V-shape retaining portions is always zero. (View A-A) In addition, because of the 2 points contact of drive balls with the driven flange at V-shaped pocket, there is no backlash. (View B) This mechanism is a ball and wedge mechanism (PAT.).

During overload the drive balls pop out from their pockets and start rolling.

Because of this not sliding but all rolling mechanism, the friction torque when idling is extremely small and it is a highly durable mechanism. Reset is carried out by an automatic reset system. As operation is resuming, the drive ball resets to its pocket.

As well as the TGB Series, the non-symmetric arrangement of the 5 drive balls and pockets allows only one engagement position, and there is no phase shift.

Transmissible Capacity/Dimensions

Shock Guard (high precision TGX Series)

① Hub ② Driven flange ③ Plate ④ Adjustment nut ⑤ Fixed nut ⑥⑦ Thrust bearing A ⑧ Thrust bearing B ⑨ Radial bearing ⑩ Side plate ⑪ Drive ball ⑫ Coil spring ⑬ Lock screw

*1 TGX35 consists of O Thrust bearing A, B Thrust bearing B, and B Radial bearing.

*2 TGX10 does not have (6)? Thrust bearing A and (9) Radial bearing. Only the drive ball is set. (35 piecesX2 lines) *3 Adjustment nut for fixing the lock screw (1) is included with the Shock Guard. After setting appropriate torque, tighten

with the following torque to avoid interference with the hub's pocket.

Lock screw size: TGX10 to 35 M5…3.8N·m{38.7kgf·cm} TGX50/70 M8…16N·m{163kgf·cm}

														Ur	nit : mm
Shock Guard Model No.	Set Torque range N∙m	Max. *r/min	Coil spring color × number	Rough bore diamter	Min. bore diameter	Max. bore diameter	A	В	C amount of movement during trip	D	E	F min. point position	G h7	H PCD	I
TGX10-L	1.7 to 6.4		Yellow×3												
TGX10-M	5.4 to 15	1400	Red×3	7	9	15	53	22	1.4	7.5	6.6	+0.3	62	54	42
TGX10-H	11 to 29		Red×6												
TGX20-L	6.5 to 24		Yellow×6												
TGX20-M	13 to 34	1100	Red×3	8.5	10	25	64	35	1.6	10	13.4	+0.7	86	74	60
TGX20-H	25 to 68		Red×6												
TGX35-L	23 to 68		Red×5		14		68					- 0.5			
TGX35-M	43 to 98	800	Green×5	12		35		37.5	7.5 2.0	11	11.6		107	88	70
TGX35-H	87 to 196		Green×10												
TGX50-L	45 to 118		Red×5												
TGX50-M	90 to 196	600	Green×5	18	20	55	92	54.8	2.6	15	19.5	+ 0.3	148	130	105
TGX50-H	176 to 392		Green×10												
TGX70-L	127 to 363		Red×8												
TGX70-M	265 to 510	480	Green×8	23	25	70	98	61	3.5 15	19.2	+ 1.0	185	164	135	
TGX70-H	392 to 784		Green×12												

Shock Guard Model No.	K Screw diameter x pitch	L Screw diameter x pitch	м	Ν	0	Ρ	Q screw diamter × length	R	S	*Mass kg	* Moment of inertia ×10 ⁻² kg ·m ²	
TGX10-L												
TGX10-M	M 25×1.5	M 30×1.5	56	58	61.8	4	M 4 \times 6	5	10	0.75	0.0293	
TGX10-H												
TGX20-L												
TGX20-M	M 40×1.5	M 40×1.5	70	73	86	6	M 5× 8	5	10	1.67	0.134	
TGX35-L												
TGX35-M	M 50×1.5	M 55×1.5	88	91	107	6	M 6× 7	6	10	2.51	0.333	
TGX50-L												
TGX50-M	M 80×1.5	M 80×1.5	123	129	148	6	M 8×13	9	17	7.03	1.83	
TGX50-H												
TGX70-L												
TGX70-M	M100×2.0	M100×2.0	148	153	185	6	$M10 \times 13$	10	18	11.4	4.88	
TGX70-H												

*1. All the models are in stock.

2. Instantaneous stop is not possible, TGXZ Series is recommended. (Refer to page 77)

3. Mass and moment of inertia are based on the bores' maximum diameters.

4. Maximum bore diameter is with key installation. In case of Power-Lock installation, refer to p 48.

TGX Series

Shock Guard

(1) Hub ② Center flange ③ Plate ④ Adjustment nut ⑤ Flange ⑥ Boss ⑦ Thurst bearings ⑧ Side plate ⑨ Drive ball
 (1) Coil spring ① Lock screw ② Hex cap bolt ③ Hex cap bolt ④ Spring washer
 * Adjustment nut for fixing the lock screw (1) is included with the Shock Guard. After setting appropriate torque, tighten with the following torque
 to avoid interference with the hub's pocket. Lock screw size: TGX10 to 35 M5…3.8N·m[38.7kgf·cm] TGX50/70 M8…16N·m[163kgf·cm]

																Unit	: mm
Coupling Type	Set Torque range	Max.	Coil spring	Sho	ck Gua	rd	C	oupling			D	C	D min.	Е	F	(
Model No.	N∙m	*r/min	color × number	Rough bore diameter	Minimum bore diameter	*Maximum bore diameter	Rough bore diameter	Minimum bore diameter	*Maximum bore diameter	A	D	C	point	PCD	PCD	G	
TGX10-LC	1.5 to 5.4		Yellowx3														
TGX10-MC	4.6 to 13	700	Red×3	7	9	15	7	9	19	69	24	1.3	+ 0.3	62	42	33	25
TGX10-HC	9.3 to 25		Red×6														1
TGX20-LC	5.2 to 19		Yellowx6														
TGX20-MC	9.8 to 27	550	Red×3	8.5	10	25	8.5	10	35	84	24	1.6	+ 0.3	89	66	55	35
TGX20-HC	21 to 55		Red×6														I
TGX35-LC	19 to 57		Red×5	12													
TGX35-MC	36 to 84	400	Green×5		14	35	12	14	50	88	24	1.9	- 0.5	113	83	70	35
TGX35-HC	74 to 167		Green×10														1
TGX50-LC	40 to 98		Red×5														
TGX50-MC	81 to 176	300	Green×5	18	20	55	18	20	60	114	34	2.4	+ 0.9	158	112	92	45
TGX50-HC	167 to 343		Green×10														1
TGX70-LC	118 to 323		Red×8														
TGX70-MC	235 to 461	240	Green×8	23	25	70	23	25	80	124	36	3.3	+ 0.6	200	145	116	50
TGX70-HC	353 to 696		Greenx12														

Coupling Type Model No.	I	J	K Screw diamter × pitch	L	м	Ν	0	P screw diameter ×length	Q screw diameter ×length	R	S	* Mass kg	* Moment of inertia ×10 ⁻² kg · m ²	Allowable angular misalignment(deg.)	Allowable parallel misalignment	Allowable shaft direction displacement
TGX10-LC																
TGX10-MC	2	42	M 30×1.5	56	-	74	74	M 4×18	M 4×10	5	10	1.07	0.0555	0.6	0.1	±0.5
TGX10-HC																
TGX20-LC																
TGX20-MC	3	46	M 40×1.5	70	-	98	98	M 5×20	M 5×12	5	10	2.38	0.231	0.6	0.1	±0.5
TGX20-HC																
TGX35-LC																
	3	50	M 55×1.5	88	-	125	125	M 6×25	M 6×15	6	10	3.92	0.663	0.6	0.1	±0.5
TGX35-HC																
TGX50-LC																
TGX50-MC	4	65	M 80×1.5	123	128	174	174	M 8×32	M 8×20	9	17	10.9	3.35	0.6	0.1	±0.6
TGX50-HC																
TGX70-LC																
TGX70-MC	4	70	M100×2.0	148	152	218	218	M10×22	M10×38	10	18	16.3	8.93	0.6	0.1	±0.7
TGX70-HC	1															

*1. All the models are in stock.

2. Instantaneous stop is not possible, TGXZ Series is recommended. (Refer to page 77)

3. Mass and moment of inertia are based on the bores' maximum diameters.

4. Maximum bore diameter is with key installation. In case of Power-Lock installation, refer to p 48.

Shock Guard TGX. Coupling Type TGX-C with Finished Bore

Finished bore products can be made for quick delivery

Bores and keyways are already finished before delivery.

The finished bores for TGX10 to TGX70 and TGX10-C to TGX70-C are standard.

Finished Bore Dimension Chart

Shock G	uard TGX	Bore di	Bore dimensions							
Shock Guard Model No.	Coupling Type Model No.	Shock Guard Side	Coupling Side (Coupling Type only)							
TGX10	TGX10-C	(10),(11),12,14,15	10,11,12,14,15,16,17,18,19							
TGX20	TGX20-C	(14),(15),(16),(17),18,19,20,22,24,25	10,11,12,14,15,16,17,18,19,20,22,24,25,28,29,30,32, 33,35							
TGX35	TGX35-C	(14),(15),(16),(17),18,19,20,22,24,25, 28,29,30,32,33,35	14,15,16,17,18,19,20,22,24,25,28,29,30,32,33,35,36, 38,40,42,43,45,46,48,50							
TGX50	TGX50-C	20,22,24,25,28,29,30,32,33,35,36,38,40,42,43,45,46, 48,50,52,55	20,22,24,25,28,29,30,32,33,35,36,38,40,42,43,45,46, 48,50,52,55,56,57,60							
TGX70	TGX70-C	25,28,29,30,32,33,35,36,38,40,42,43,45,46,48,50,52, 55,56,57,60,63,65,70	25,28,29,30,32,33,35,36,38,40,42,43,45,46,48,50,52, 55,56,57,60,63,65,70,71,75,80							
Deli	very	EXJapan 4 weeks by sea								

1. Finished bore dimensions with () at Shock Guard side are applied only for Shock Guard Coupling.

Model No. Shock Guard

Shock G	Sho	ock Guard s	ide	Coupling side (Coupling Type only)			
Shock Guard Model No.	Coupling Type Model No.	Bore diameter	Set screw	Set screw position L1	Bore diameter	Set screw	Set screw position L2
TGX10	TGX10-C	ϕ 15 and below	$2-M4 \times 4$	21	ϕ 19 and below	2-M4×4	8
TOYOO	TGX20-C	$\phi23$ and below	$2-M5 \times 5$	20.5	4.25 and holow	2 445 ~ 5	12
19720		φ 24,25	$2-M4 \times 4$	20.5	ϕ 35 and below	2-11/3 ~ 3	12
TGX35	TGX35-C	ϕ 35 and below	2-M6×6	20.5	ϕ 50 and below	2-M6×6	11
TGX50	TGX50-C	$\phi55$ and below	2-M6×6	24.5	ϕ 60 and below	2-M6×6	13
TGX70 TGX70-C		ϕ 70 and below	2-M6×6	25	ϕ 80 and below	2-M6×6	15

1. Set screws are located at 2 positions, on the keyway and $90^\circ\,\text{CW}$ from it.

2. For Shock Guard Couplings, only the TGX10-C has a different keyway phase between the Shock Guard side and the coupling side.

Bore diameter and keyway specifications

Unit · mm

- Bore diameter tolerance is as follows:
 φ 18 and below....0 to +0.021mm
 φ 19 and above.....H7
- φ 19 and above TTT 17
 Keyway is New JIS (JIS B 1301-1996) "standard".
- standard .
- \cdot Set screws are included in the delivery.

Bore diameter	Chamfer dimensions
ϕ 25 and below	C0.5
ϕ 50 and below	C1
ϕ 51 and above	C1.5

Handling

1. Setting trip torque

- (1) TGX Shock Guards are all set at the "0" point (minimum torque you receive the Shock Guard. (Refer to pages 43, 44)
- (2) From the "Tightening Amount-Torque Correlation Chart" (below), find the adustment nut's (bolt) tightening angle equivalent to the predetermined trip torque and tighten them. The torque indicator is at every 60° pitch. Set at 60° toward the determined tightening value, then install to the machine and conduct a trip test. Gradually tighten

and set at optimum trip torque. Each product's trip torque does not always correspond with the value listed in the "Tightening Amount -Torque Correlation Chart", so use these values only as a rough guide. (3) After setting torque, screw the lock screw to adjustment nut.

(4) Do not turn the adjustment nut (bolt) more than the torque indicator's maximum value. Doing so will put it in a locked position, and there will be no leeway for the disk spring to bend. Refer to page 32 for the lock screws' tightening torque and precautions.

Tightening Amount-Torque Correlation Chart

Centering method

(1) Centering method I

- a .Separate the flange from the hub and center flange.
- b .Move the flange, then set to the I dimensions shown in Table 1.
- . Fix a dial gauge to the hub (coupling side hub), then measure С the run-out of the hub's end face and outer circumference.

(2) Centering method I

- a .Separate the flange and the center flange.
- b .Fix a dial gauge to the shaft, then measure the run-out of the hub's end face and outer circumference.
- . Move the boss (coupling side hub), then set to the I dimensions shown in Table1.

Allowable Misalignment

Model No.	Allowable angular misalignment deg.	Allowable parallel misalignment	Allowable axial misalignment
TGX10-C	0.6	0.1	±0.5
TGX20-C	0.6	0.1	± 0.5
TGX35-C	0.6	0.1	±0.5
TGX50-C	0.6	0.1	±0.6
TGX70-C	0.6	0.1	±0.7

Table 1 Unit: mm Model No. I dimensions TGX10-C 2 TGX20-C 3 TGX35-C 3 TGX50-C Δ TGX70-C Λ

For reference: Hub end face run-out per angular misalignment $\theta = 0.10^{\circ}$ Unit : mm

Model No.	Outside diameter	Hub end face run-out
TGX10-C	φ 53	0.092
TGX20-C	ϕ 75	0.131
TGX35-C	φ 98	0.171
TGX50-C	φ138	0.241
TGX70-C	φ 177	0.309

* Make angular misalignment as small as possible when installing the Shock Guard.

Unit: mm

Bore finishing

Refer to the instruction manual for more information on Shock Guard TGX and Shock Guard Coupling TGX-C disassembly for bore finishing, finishing and assembly.

Bore Keyway Set Screw Dimensions

Dimensions Model No.	A x screw diameter	B x screw diameter	C x screw diameter	a	b	с
TGX10	$21 \times M5$ and below			30	_	_
TGX20	20.5×M5			40	_	_
TGX35	20.5×M6			55	_	_
TGX50	24.5×M6			80		_
TGX70	26 ×M6			100	_	_
TGX10-C		$8 \times M$ 4 and below	$21\ \times M5$ and below	_	33	30
TGX20-C		$12{\times}M$ 8 and below	20.5×M5	_	55	40
TGX35-C		$11{\times}M10$ and below	20.5×M6	_	70	55
TGX50-C		$13 \times M10$ and below	24.5×M6		92	80
TGX70-C		$15{\times}M10$ and below	25.2×M6		116	100

Chuck the hub's end face, then center and finish it as shown in the diagram below.

Chuck the flange's outer diameter, then center and finish it as shown in the diagram below.

Combination with a Power Lock

1. Applicable range and Transmissible torque

It is possible to combine Shock Guards and Shock Guard Couplings with the Power Locks listed below. TEM will also supply a Shock Guard combined with a Power Lock and special pressure flange and bolts upon request. The chart shows Power Lock transmissible torque for a single set. In the case of multiple sets, multiply by the coefficient below to get the transmissible torque.

Ν	S	1
2	1.55	(
3	1.85	

N = Line Power Lock sets S = coefficient

(Example) In case the shaft diameter of 10 mm and 2 sets of Power Locks for TGX20 1.10 × 1.55 = 1.705 about 1.70kgf·m

N·m {kgf·m}

(1)Shock Guard TGX

Adjustment nut side

Power Lock transmissible torque

B		Model No. of Adjustment Guard									
ore d	Power Lock	TG	K 10	TG	X20	TGX35		TGX50		TGX70	
iame	Model No	Adjustment	Fixed	Adjustment	Fixed	Adjustable	Fixed	Adjustment	Fixed	Adjustment	Fixed
fer	nieder i te.	nut side	nut side	nut side	nut side	nut side	nut side	nut side	nut side	nut side	nut side
10	PL010×013E	10.8 {1.10}		10.8	10.8						
12	PL012×015E	15.7 1.60		15.7	15.7 1.60						
13	PL013×016E			18.6 1.90	18.6 1.90						
14	PL014×018E			30.4 3.10	30.4 3.10						
15	PL015×019E			35.3 3.60	35.3 3.60	35.3 3.60	35.3 3.60				
16	PL016×020E			39.2 4.00	39.2 4.00	40.2 4.10	40.2				
17	PL017×021E			43.1	43.1 4.40	45.1	45.1				
18	PL018×022E			46.1 4.70	46.1 4.70	51.0 5.20	51.0 5.20				
19	PL019×024E			41.2	41.2 4.20	56.8 5.80	56.8 5.80				
20	PL020×025E			44.1 4.50	44.1 4.50	62.7 6.40	62.7 6.40	62.7 6.40	62.7 6.40		
22	PL022×026E					75.5	75.5	75.5	75.5		
24	PL024×028E					90.2	90.2 9.20	90.2 9.20	90.2 9.20		
25	PL025×030E					91.1 9.30		98.0 10.0	98.0 10.0	98.0 10.0	98.0 10.0
28	PL028×032E					111		123	123	123	123 12.5
30	PL030×035E					115 11.7		141 14.4	141 14.4	141 14.4	141 14.4
32	PL032×036E					124		160 16.3	160 16.3	160 16.3	160 16.3
35	PL035×040E					127		217	217	217	217
36	PL036×042E							229	229	229 23.4	229 23.4
38	PL038×044E							256	256	256	256 26.1
40	PL040×045E							312 31.8	312 31.8	312 31.8	312 31.8
42	PL042×048E							344 35.1	344 35.1	344 35.1	344 35.1
45	PL045×052E							366	366	490 50.0	490 50.0
48	PL048×055E							398 40.6	398 40.6	530 54.1	530 54.1
50	PL050×057E							419	419 42.8	557 56.8	557 56.8
55	PL055×062E									624 63.7	624 63.7
56	PL056×064E									590 60.2	590 60.2
60	PL060×068E									644 65.7	644 65.7
63	PL063×071E									685 69.9	685
65	PL065×073E									711	711
70	PL070×079E									724	724

Pressure bolt tightening torque

N·m kgf·m

110	N·m (kgr·m)										
Model No. of Shock C								Juard			
ore d	Power Lock	TG	X10	TG	TGX20		K35	TGX50		TGX70	
iame	Model No.	Adjustment	Fixed	Adjustment	Fixed	Adjustment	Fixed	Adjustment	Fixed	Adjustment	Fixed
ē		nut side	nut side	nut side	nut side	nut side	nut side	nut side	nut side	nut side	nut side
10	PL010×013E	2.94		1.96	1.96						
12	PL012×015E	3.14		2.06	2.06						
13	PL013×016E			2.16	2.16						
14	PL014×018E			3.53 0.36	3.53 0.36						
15	PL015×019E			3.92 0.40	3.92 0.40	2.94	5.00 0.51				
16	PL016×020E			4.02	4.02 0.41	3.04 0.31	5.10 0.52				
17	PL017×021E			4.02 0.41	4.02 0.41	3.14 0.32	5.19 0.53				
18	PL018×022E			4.02	4.02	3.23 0.33	5.39 0.55				
19	PL019×024E			4.02	4.02	3.63 0.37	6.17 0.63				
20	PL020×025E			4.02	4.02 0.41	3.72 0.38	6.37 0.65	5.49 0.56	5.49 0.56		
22	PL022×026E					3.72 0.38	6.27 0.64	5.59 0.57	5.59 0.57		
24	$PL024\!\times\!028E$					3.92 0.40	6.66 0.68	5.59 0.57	5.59 0.57		
25	PL025×030E					4.02		6.27 0.64	6.27 0.64	5.00 0.51	5.00 0.51
28	$PL028\!\times\!032E$					4.02		6.47 0.66	6.47 0.66	5.19 0.53	5.19 0.53
30	PL030×035E					4.02 0.41		7.06	7.06	5.59 0.57	5.59 0.57
32	PL032×036E					4.02		7.35	7.35	5.88	5.88 0.60
35	PL035×040E					4.02		9.11 0.93	9.11 0.93	7.25	7.25
36	PL036×042E							9.51 0.97	9.51 0.97	7.64	7.64
38	PL038×044E							9.90 {1.01}	9.90 {1.01}	7.94	7.94
40	PL040×045E							11.7 {1.19}	11.7 1.19	9.31	9.31 0.95
42	PL042×048E							12.3	12.3	9.80 1.00	9.80 1.00
45	PL045×052E							13.7 {1.40}	13.7 1.40	13.7 1.40	13.7 1.40
48	PL048×055E							13.7 {1.40}	13.7 1.40	13.7 1.40	13.7 1.40
50	PL050×057E							13.7 1.40	13.7 1.40	13.7 1.40	13.7 1.40
55	PL055×062E									13.7 1.40	13.7 1.40
56	PL056×064E									13.7	13.7 1.40
60	PL060×068E									13.7 1.40	13.7 1.40
63	PL063×071E									13.7 1.40	13.7 1.40
65	PL065×073E									13.7	13.7 1.40
70	PL070×079E									13.7	13.7

Shock Guard

(2) Coupling Type TGX-C

Power Lock transmissible torque

N·m {kgf·m}

В					Mode	el No. of	Juard	uard			
re di	Power Lock	TGX	10-C	TGX	20-C	TGX	35-C	TGX	50-C	TGX	70-C
ame	Model No.	Shock	Coupling	Shock	Coupling	Shock	Coupling	Shock	Coupling	Shock	Coupling
fer		Guard side	side	Guard side	side	Guard side	side	Guard side	side	Guard side	side
10	PL010×013E	10.8 {1.10}	10.8	10.8 {1.10}	10.8 {1.10}						
12	PL012×015E	15.7	15.7	15.7	15.7 [1.60]						
13	PL013×016E			18.6	18.6 [1.90]						
14	PL014×018E			30.4 [3.10]	30.4 [3.10]						
15	PL015×019E			35.3 3.60	35.3 3.60	35.3 3.60	35.3 3.60				
16	PL016×020E			39.2 4.00	39.2 4.00	40.2 4.10	40.2 4.10				
17	PL017×021E			43.1 4.40	43.1 4.40	45.1 4.60	45.1 4.60				
18	PL018×022E			46.1 4.70	46.1 4.70	51.0 5.20	51.0 5.20				
19	PL019×024E			41.2	41.2 4.20	56.8 5.80	56.8 5.80				
20	PL020×025E			44.1	44.1	62.7 6.40	62.7 6.40	62.7 6.40	62.7 6.40		
22	PL022×026E					75.5	75.5	75.5	75.5		
24	PL024×028E					90.2	90.2	90.2	90.2		
25	PL025×030E					91.1 9.30	91.1 9.30	98.0 10.0	98.0 10.0	98.0	98.0 10.0
28	PL028×032E					111 {11.3}	111 11.3	123	123	123	123
30	PL030×035E					115	115	141	141 14,4	141	141 14,4
32	PL032×036E					124	124	160	160	160	160
35	PL035×040E					127	127	217	217	217	217
36	PL036×042E							229 23.4	229 23.4	229	229
38	PL038×044E							256	256	256	256
40	PL040×045E							312 31.8	312 31.8	312 31.8	312 31.8
42	PL042×048E							344	344	344	344
45	PL045×052E							366 37.3	366	490	490
48	PL048×055E							398 40,6	398 40.6	530	530
50	PL050×057E							419	419	557	557
55	PL055×062E									624	624
56	PL056×064E									590	590
60	PL060×068E									644	644
63	PL063×071E									685	685
65	PL065×073E									711	711
70	PL070×079E									724	724

Pre	Pressure bolt tightening torque								N∙m∤	kgf∙m		
B					Mode	el No. of	Shock C	Guard				
re di	Power Lock	TGX	10-C	TGX	20-C	TGX	35-C	TGX	50-C	TGX	70-C	
ame	Model No.	Shock	Coupling	Shock	Coupling	Shock	Coupling	Shock	Coupling	Shock	Coupling	
er		Guard side	side	Guard side	side	Guard side	side	Guard side	side	Guard side	side	
10	PL010×013E	2.94	0.30	0.20	0.20							
12	PL012×015E	3.14	3.14	2.06	2.06							
13	PL013×016E			2.16	2.16							
14	PL014×018E			3.53	3.53							
15	PL015×019E			3.92	3.92	2.94	2.94					
16	$PL016 \times 020E$			4.02	4.02	3.04	3.04					
17	PL017×021E			4.02	4.02	3.14	3.14					
18	$PL018\!\times\!022E$			4.02	4.02	3.23 0.33	3.23 0.33					
19	$PL019{ imes}024E$			4.02 0.41	4.02 0.41]	3.63 0.37	3.63 0.37					
20	$PL020\!\times\!025E$			4.02	4.02 0.41	3.72 0.38	3.72	5.49 0.56	5.49 0.56			
22	$PL022\!\times\!026E$					3.72	3.72 0.38	5.59 0.57	5.59 0.57			
24	$PL024\!\times\!028E$					3.92 0.40	3.92 0.40	5.59 0.57	5.59 0.57			
25	$PL025\!\times\!030E$					4.02	4.02	6.27 0.64	6.27 0.64	5.00	5.00 0.51	
28	$PL028\!\times\!032E$					4.02	4.02	6.47 0.66	6.47 0.66	5.19 0.53	5.19 0.53	
30	PL030×035E					4.02	4.02	7.06	7.06	5.59 0.57	5.59 0.57	
32	PL032×036E					4.02	4.02	7.35	7.35	5.88	5.88 0.60	
35	PL035×040E					4.02	4.02 0.41	9.11 0.93	9.11 0.93	7.25	7.25	
36	PL036×042E							9.51 0.97	9.51 0.97	7.64	7.64	
38	PL038×044E							9.90 1.01	9.90 1.01	7.94	7.94	
40	PL040×045E							11.7	11.7	9.31	9.31	
42	PL042×048E							12.3	12.3	9.80	9.80	
45	PL045×052E							13.7	13.7	13.7	13.7	
48	PL048×055E							13.7	13.7	13.7	13.7	
50	PL050×057E							13.7	13.7	13.7	13.7	
55	PL055×062E									13.7	13.7	
56	PL056×064E									13.7	13.7	
60	PL060×068E									13.7	13.7	
63	PL063×071E									13.7	13.7	
65	PL065×073E									13.7	13.7	
70	PI070×079F									13.7	13.7	

2. Rough bore pressure flange

Special pressure flange and pressure bolts are MTO upon request.

Special pressure bolts are JIS Strength Class 10.9.

Pressure flange is installed with tap holes at the hub or boss (coupling side hub) end faces.

Refer to page 50 for the recommended finished dimensions.

Rouah	Bore	Pressure	Flanae	Dimensions
				2

Rough Bo	re Pr	essu	re Flo	ing	e D	ime	nsior	IS							Unit: mm
Pressure flange Model No.	А	Rougi measu B	ements	D	E	F	G PCD	н	J	^{•1} Mass kg	Moment of inertia kg•m²	'²GD² kgf∙m²	Pressure bo × the nun	lt size nber	Tap side screw effective depth
TGX10-F 30 14.9 10.1 5 6 11 22 4 4.5 0.037 0.043 0.173 Mdx14R 4 Mdx14R 4															M4× 8R
TGX10-F 30 14.9 10.1 5 6 11 22 4 4.5 0.037 0.043 0.173 Mdx14R 4 M TGX20-F 40 24.8 10.1 6 6 12 32 6 4.5 0.080 0.150 0.600 Mdx14R 6 M															M4× 8R
TGX35-F	55	39.8	15.1	6	6	12	47	8	4.5	0.16	0.598	2.39	M4×14R	8	M4× 8R
TGX50-F	81	56.8	20.2	7	10	17	69	8	6.6	0.53	4.240	16.96	M6×22R	8	M6×12R
TGX70-F	101	78.7	25.2	7	10	17	89	10	6.6	0.87	10.83	43.33	M6×22R	10	M6×12R

 $^{*1},\,^{*2}$ Weight and GD² are together as 1 set of pressure flange (max. bore) and pressure bolt. Note: All products are MTO.

3. Pressure flange recommended finishing dimensions

(1) Centering

Chuck and center based on the flange external diameter. (Refer to the diagram on the right)

(2) Recommended dimensionsDepending on Power Lock size, choose the finishing dimensions from the chart below.

Pressure flange centering and processing diagram

Bore diameter	Power Lock	TGX1	0 (C) F	TGX2	20 (C) F	TGX3	5(C)	TGX5	0 (C)	TGX7	′0 (C) F
(mm)	Model No.	do _0_1	di $^{+0.1}_{-0}$								
10	PL010×013E	12.9	10.1	12.9	10.1						1
12	PL012×015E	14.9	12.1	14.9	12.1						1
13	PL013×016E			15.9	13.1						
14	PL014×018E			17.9	14.1						
15	PL015×019E		1	18.9	15.1	18.9	15.1	18.9	15.1		
16	PL016×020E		1 	19.9	16.1	19.9	16.1	19.9	16.1		1
17	PL017×021E		1 1 1	20.9	17.1	20.9	17.1	20.9	17.1		1 1 1
18	PL018×022E		1	21.9	18.1	21.9	18.1	21.9	18.1		1
19	PL019×024E		1	23.8	19.2	23.8	19.2	23.8	19.2		1
20	PL020×025E		1	24.8	20.2	24.8	20.2	24.8	20.2		1
22	PL022×026E					25.8	22.2	25.8	22.2		
24	PL024×028E					27.8	24.2	27.8	24.2		
25	PL025×030E				 	29.8	25.2	29.8	25.2	29.8	25.2
28	PL028×032E		1 1 1		 	31.8	28.2	31.8	28.2	31.8	28.2
30	PL030×035E		1 1 1 1		 	34.8	30.2	34.8	30.2	34.8	30.2
32	PL032×036E		1 1 1 1		1 	35.8	32.2	35.8	32.2	35.8	32.2
35	PL035×040E		1 1 1		1 1 1	39.8	35.2	39.8	35.2	39.8	35.2
36	PL036×042E		 		 			41.8	36.2	41.8	36.2
38	PL038×044E		1		1 			43.8	38.2	43.8	38.2
40	PL040×045E							44.8	40.2	44.8	40.2
42	PL042×048E							47.8	42.2	47.8	42.2
45	PL045×052E				 			51.8	45.2	51.8	45.2
48	PL048×055E		1 1 1		 			54.8	48.2	54.8	48.2
50	PL050×057E		1 1 1		 			56.8	50.2	56.8	50.2
55	PL055×062E		 		 				 	61.8	55.2
56	PL056×064E		1 1 1		1 1 1 1					63.8	56.2
60	PL060×068E		1 1 1		1 					67.8	60.2
63	PL063×071E		1		1 1 1				1	70.8	63.2
65	PL065×073E		1		1 1 1					72.8	65.2
70	PL070×079E		1		1					78.7	70.3

* Refer to the instruction manual for information on hub bore finishing when installing the Power Lock.

Unit: mm

Shock Guard TGF Series

Features

Ideal for direct mounting of an index table thanks to the excellent mounting surface accuracy of the output flange.

High accuracy

Ideal for indexers thanks to its minimal backlash and excellent reset position accuracy.

One position type

The balls and pockets, which transfer the torque, are engaged only in one position because of the unique structure.

Easy torque adjustment

You only have to turn the adjustment nut (or bolt) to adjust the trip torque thanks to the torque scale.

Automatic reset

Thanks to automatic re-engagement, you only have to rotate the drive side after removing the cause of overload.

	TGF
Type 2	Enables direct mounting of timing pulleys. The shaft-securing setscrew can be tightened from the outside.
Туре З	Thinner than Type 2 and ideal for Power-Lock mounting.
Type 5	The Echt-Flex Coupling provides an angular tolerance. Parallelism errors are not allowed.
Type 7	The Echt-Flex Coupling provides angular and parallelism tolerances.

The TGF series transfers driving force from the hub to the drive plate on the output side via drive balls (and vice versa). Bolt a sprocket or timing pulley directly to the drive plate.

The hub flange has several holes to hold the drive balls.

There are pockets on the drive plate on the output side, and the drive balls are pushed by coil springs via the slide plate to be fitted into the pockets to transfer the driving force.

If an overload occurs, the drive balls push the slide plate toward the coil springs and come out of the pockets of the drive plate while rotating to release the driving force.

Then, the housing moves toward the coil springs. Therefore, it is easy to stop the drive source automatically after the occurrence of an overload by detecting the amount of movement of the housing using aTG sensor or a similar device.

Resetting procedure

If you restart the operation after the occurrence of an overload, the drive balls automatically return to their positions within one revolution.

If you continue to rotate the TGF series after the occurrence of an overload, the TGF series is repeatedly reset. Therefore, detect overloads using a TG sensor or a similar device and shutdown the drive source immediately.

52

Transmissible Capacity/Dimensions

																		U	nit : mm
Model No.	Set I ra N	orque nge • m	Max r/i	x. rpm min ^{*1}	Coil spring number	Rough bore diamter	S Min. bore diameter	JIS keyway fi bore di	for max. ia.	A	В	С	D	E	F	G P.C.D.	H hó	I	J
TGF20-L2	5	to 20			2														
TGF20-M2	10	to 40	9	00	4	8	10	20)	55	9	3.	5 23	81	80	70	57	51	98
TGF20-H2	20	to 80			8														
TGF30-L2	5	to 73.5	5		2	_													
TGF30-M2	10	to 147	7	40	4	10	12	30)	80	11	5.	5 39	103	100	90	75	69	130
TGF30-H2	20	to 294			8														
TGF45-L2	30	to 156			3	-													
TGF45-M2	60	to 313	6	000	6	20	22	45	5	95	14	7.	0 46	142	140	125	100	92	165
TGF45-H2	120	to 568			12														
Model No.	K	L	М	N scr diam ×lenç	ew (ter p gth dia	O No. ol ocs hole a. × dep	f Pscr e diam oth × ler	rew nter ngth	screw neter ^{*2}	R*2	Т	U	V screw diamter ×length	W scre diamte ×lengt	m r Ma h	ss ^{*3} Mor g	nent of inertion kg • m²	radi	owable al load N
TGF20-L2																			
TGF20-M2	75	70	33	M5×	9 4	$-\phi 5 \times c$	5 M4×	12 N	۸5	5	3	1.2	$M4 \times 8$	—	1.	.4 0	0.00108	3 1	300
TGF20-H2																			
TGF30-L2																			
TGF30-M2	98	92	48	M6×	11 4	-φ7×7	7 M6×	15 N	۸6	5	4	1.8	M4×8	—	3.	.3 0	0.00435	5 3	100
TGF30-H2																			
TGF45-L2																			
TGF45-M2	132	124	66	M8×	13 6	-φ7×7	7 M6×	20 N	/8	8	4	2.2	M4×8	-	6.	.7 0	0.0165	3	900
TGF45-H2																			

*1. Contact us for details on use at speeds higher than the maximum speed.

2. Setscrew taps are not processed. Dimensions are for reference only.

3. Mass and moment of inertia are based on the bores' maximum diameters.

Note) When installing a pulley or sprocket, use high-tensile bolts (G10.9 or higher) and determine the length carefully so that the bolts are not buried deeper than the mounting tap depth N.

Shock Guard TGF Series

Transmissible Capacity/Dimensions

																		Ur	nit : mm
Model No.	Set t ra N	torque inge I•m	Max r/r	k. rpm min ^{*1}	Coil spring number	Rough bore diamter	S Min. bore diameter	JIS keyway for m bore dia.	и. А	В	C		D	E	F	G P.C.D.	H hó	I	J
TGF65-L2	40 t	o 264			3														
TGF65-M2	80 t	o 539	4	.30	6	30	32	65	120	15	5 7	,	56	187	185	165	140	134	210
TGF65-H2	160 t	o 1078	3		12														
TGF90-L2	196 t	o 1225	5		3														
TGF90-M2	392 t	o 2450) 3	30	6	45	47	90	170	23	9)	93	252	246	215	175	170	280
TGF90-H2	784 t	o 4900)		12														
Model No.	K	L	М	N scre diamte ×leng	ew C er p Ith dia	D No. of cs hole 1. × dept	P scr diam h × ler	rew hter ngth	² R ^{*2}	Т	U	V so dia ×le	crew imter ength	W screw diamter × length	′ Mas ₃ k≨	ss*4 Mor g	hent of iner kg • m²	tia Alla radi	owable al load N
TGF65-L2																			
TGF65-M2	175	167	106	M10×1	17 6	-φ7×12	2 M6>	<20 M10	10	5	2.7	-	_	M10×20	0 10	5 0	.0678	30	000
TGF65-H2																			
TGF90-L2																			
TGF90-M2	243	233	150	M16×2	20 6-	φ12×1	5 M10>	<30 M12	10	8	5.0	-	-	M12×35	5 37	7 0	.267	33	000
TGF90-H2																			

*1. Contact us for details on use at speeds higher than the maximum speed.

2. Setscrew taps are not processed. Dimensions are for reference only.

3. TGF65 uses hex cap countersunk screws, and TGF90 uses hex bolts.

4. Mass and moment of inertia are based on the bores' maximum diameters.

Note) When installing pulley or sprocket, use high-tensile bolts (G10.9 or higher) and determine the length carefully so that the bolts are not buried deeper than the mounting tap depth N.

Transmissible Capacity/Dimensions

																		Ur	nit : mm
Model No.	Set t ra N	orque nge • m	Max r/r	k. rpm min ^{*1}	Coil spring number	Rough bore diamter	S Min. bore diameter	JIS keyway bore c	for max. Jia.	А	В	С	D	E	F	G P.C.D.	H hó	I	J
TGF20-L3	5	to 20			2														
TGF20-M3	10	to 40	9	00	4	8	10	20)	47	9	3.	5 15	81	80	70	57	51	98
TGF20-H3	20	to 80			8														
TGF30-L3	5 t	o 73.5			2														
TGF30-M3	10 t	o 147	7	40	4	10	12	30)	71	11	5.	5 30	103	100	90	75	69	130
TGF30-H3	20 t	o 294			8														
TGF45-L3	30 t	o 156			3														
TGF45-M3	60 t	o 313	6	00	6	20	22	45	5	81	14	7.	0 32	142	140	125	100	92	165
TGF45-H3	120	to 568			12														
Model No.	K	L	Μ	N scr diam × leng	ew C ter p gth dia) No. of cs hole 1. × dep	F P scr diam th × ler	rew nter ngth	! screw neter ^{*2}	R^{*2}	Т	U	V screw diamter ×length	W scre diamte ×lengt	m r h	ss ^{*3} Mor	nent of iner kg • m²	^{tia} Allc radi	owable al load N
TGF20-L3																			
TGF20-M3	75	70	33	M5×	9 4-	$\phi 5 \times \epsilon$	5 M4×	12 N	۸5	21	3	1.2	$M4 \times 8$	_	1.	3 0	.00108	1	300
TGF20-H3																			
TGF30-L3																			
TGF30-M3	98	92	48	M6×	11 4-	ϕ 7 × 7	7 M6×	15 N	٨6	37	4	1.8	$M4 \times 8$	-	3.	2 0	.00429	3	100
TGF30-H3																			
TGF45-L3																			
TGF45-M3	132	124	66	M8×	13 6-	ϕ 7 × 7	7 M6×	20 1	8N	40	4	2.2	M4×8	-	6.	5 0	.0163	3	900
TGF45-H3																			

*1. Contact us for details on use at speeds higher than the maximum speed.

2. Setscrew taps are not processed. Dimensions are for reference only.

3. Mass and moment of inertia are based on the bores' maximum diameters.

Note) When installing a pulley or sprocket, use high-tensile bolts (G10.9 or higher) and determine the length carefully so that the bolts are not buried deeper than the mounting tap depth N.

Transmissible Capacity/Dimensions

																		U	nit : mm
Model No.	Set t ra N	torque inge · m	Max r/r	k. rpm min ^{*1}	Coil spring number	Rough bore diamter	S Min. bore diameter	JIS keyway for max bore dia.	. A	В	C	C [D	E	F	G P.C.D.	H hó	I	J
TGF65-L3	40 t	o 264			3														
TGF65-M3	80 t	o 539	4	30	6	30	32	65	104	15	7	4	0	187	185	165	140	134	210
TGF65-H3	160 t	o 1078	3		12														
TGF90-L3	196 t	o 1225	5		3														
TGF90-M3	392 t	o 2450) 3	30	6	45	47	90	150	23	9	7	'3	252	246	215	175	170	280
TGF90-H3	784 t	o 4900)		12														
Model No.	K	L	М	N scre diamte ×leng	w C er po th dia) No. of cs hole . × dept	P scr diam h × ler	nter ngth	R*2	Т	U	V scr diam ×len	ew iter gth	W screw diamter × length*	Mas 3 ké	s*4 Mor	nent of iner kg • m²	tia Alla radi	owable al load N
TGF65-L3																			
TGF65-M3	175	167	106	M10×1	7 6	-φ7×1	2 M6>	<20 M10	49	5	2.7			M10×20	15	.2 0	.0662	30	0000
TGF65-H3																			
TGF90-L3																			
TGF90-M3	243	233	150	M16×2	20 6-	φ12×1.	5 M10>	<30 M12	75	8	5.0	_		M12×35	34	.7 C	.258	33	3000
TGF90-H3																			

*1. Contact us for details on use at speeds higher than the maximum speed.

2. Setscrew taps are not processed. Dimensions are for reference only.

3. TGF65 uses hex cap countersunk screws, and TGF90 uses hex bolts. (Hex bolts will protrude a maximum of 7.5 mm from the edge of the hub.) 4. Mass and moment of inertia are based on the bores' maximum diameters.

Note) When installing a pulley or sprocket, use high-tensile bolts (G10.9 or higher) and determine the length carefully so that the bolts are not buried deeper than the mounting tap depth N.

Transmissible Capacity/Dimensions

																	Un	it : mm
	Set t	orque			Coil	S	hock G	uard S		Coupli	ng S1							
Model No.	ra N	nge • m	Max r/r	nin ^{*1}	spring number	Rough bore diamter	Min. bore diameter	JIS keyway for max. bore dia.	Rough bore diamter	Min. bore diameter	e JIS keyway for mo bore dia.	IX. A	A1	A2	A3	B1	B2	C1
TGF20-L5	5	to 20			2													
TGF20-M5	10	to 40	9	00	4	8	10	20	15	17	42	55	33.5	66.3	111	24.5	14	11.2
TGF20-H5	20	to 80			8													
TGF30-L5	5	to 73.5	5		2													
TGF30-M5	10	to 147	7	40	4	10	12	30	15	17	60	80	47.8	102.5	162	33.8	22	11.7
TGF30-H5	20	to 294			8													
TGF45-L5	30	to 156			3													
TGF45-M5	60	to 313	6	00	6	20	22	45	25	27	74	95	57.2	110	184	43.2	17	16.8
TGF45-H5	120	to 568			12													
Model No.	D	E1	F1	J	К	L	M	N1 screw diamter × 1 length	C No. of po dia. ×) cs hole depth	P screw F diamter ×length	91 screw diamter ×length	Q*2	Q1*2	R*2	R1*2	Т	U
TGF20-L5 TGF20-M5 TGF20-H5	23	104	61	98	75	70	33	M5×20	4 -φ\$	5×6	M4×12	M4×6	M5	M5	5	8	3	1.2
TGF30-L5 TGF30-M5 TGF30-H5	39	143	84	130	98	92	48	M6×25	4 -φ7	7×7	M6×15	M5×6	M6	M6	5	12	4	1.8
TGF45-L5 TGF45-M5 TGF45-H5	46	168	106	165	132	124	66	M8×25	6- <i>ф7</i>	7×7	M6×20	M5×6	M8	M8	8	15	4	2.2
Model No.	V scre	ew W	screw	Mass	³ Momer	nt of inertia	* ³ Cou	pling x*	All	owable	Misalignme	nt						

	V screw	W screw	Mass*3	Moment of inertia ^{*3}	Coupling		Allowable M	Aisalignment
Model No.	diamter	diamter	land land		model Ne	Χ*4	Angular	Shaft direction
	×length	imes length	ĸg	Kg · m	model No.		misalignment deg	displacement*5
TGF20-L5								
TGF20-M5	$M4 \times 8$	—	3.2	0.00365	NEF25S	21	1	±1.4
TGF20-H5								
TGF30-L5								
TGF30-M5	$M4 \times 8$	—	8.6	0.0188	NEF80S	29.5	1	±1.8
TGF30-H5								
TGF45-L5								
TGF45-M5	$M4 \times 8$	—	14.0	0.0437	NEF130S	20	1	±2.5
TGF45-H5								

*1. Contact us for details on use at speeds higher than the maximum speed.

2. Setscrew taps are not processed. Dimensions are for reference only.

3. Mass and moment of inertia are based on the bores' maximum diameters.

4. This is the space required for the insertion of a reamer bolt.

The allowable displacement in the shaft direction is the value when the angular error is zero.

Parallelism errors are not allowed.

Shock Guard

I Init · mm

TGF Series

Transmissible Capacity/Dimensions

																	011	
	Set t	oraue	Man		Coil	S	hock G	uard S		Coupli	ng S1							
Model No.	ra	nge		nin ^{*1}	spring	Rough bore	Min. bore	JIS keyway for max.	Rough	Min. bore	JIS keyway for mo	IX. A	A1	A2	A3	B1	B2	C1
	IN	·m			number	diamter	diameter	bore dia.	diamter	diameter	bore dia.							
TGF65-L5	40 to	o 264			3													
TGF65-M5	80 to	539	4	30	6	30	32	65	45	47	95	120	76.2	147.2	245	59.7	22	21.6
TGF65-H5	160 to	b 1078	3		12													
TGF90-L5	196 to	b 1225	5		3													
TGF90-M5	392 to	o 2450) 3	30	6	45	47	90	50	52	118	170	101.6	211.2	340	76.1	35	27.2
TGF90-H5	784 to	o 4900)		12													
								N1 screw	C)	P screw P	1 screw						
Model No.	D	E1	F1	J	K	L	M	diamter × I	No. of po	cs hole	diamter	diamter	Q*2	Q1*2	R^{*2}	R1*2	Т	U
								length	dia. ×	depth	×length	×length						
TGF65-L5																		
TGF65-M5	56	214	137	210	175	167	106	M10×45	6- <i>φ</i> 7	×12	M6×20	M6×8	M10	M10	10	20	5	2.7
TGF65-H5																		
TGF90-L5																		
TGF90-M5	93	276	169	280	243	233	150	M16×60	6- <i>ф</i> 12	2×15	M10×30	M6×10	M12	M12	10	30	8	5.0
TGF90-H5																		
	Vsc	rew	W sci	°ew/						Allow	able Misali	anment						

Model No.	V screw diamter × length	W screw diamter × length ^{*3}	Mass ^{*4} kg	Moment of inertia ^{*4} kg ⋅ m²	Coupling model No.	X*5	Allowable N Angular misalignment deg	Shaft direction displacement*
TGF65-L5								
TGF65-M5	_	M10×20	32.0	0.166	NEF340S	19.5	1	± 3.3
TGF65-H5								
TGF90-L5								
TGF90-M5	_	M12×35	75.6	0.660	NEF700S	40	1	±4.0
TGF90-H5								

*1. Contact us for details on use at speeds higher than the maximum speed.

2. Setscrew taps are not processed. Dimensions are for reference only.

3. TGF65 uses hex cap countersunk screws, and TGF90 uses hex bolts.

4. Mass and moment of inertia are based on the bores' maximum diameters.

5. This is the space required for the insertion of a reamer bolt.

6. The allowable displacement in the shaft direction is the value when the angular error is zero.

Parallelism errors are not allowed.

	Set t	orque	Max	(rom	Coil	S	hock G	uard S		Couplin	ng S1								
Model No.	ra	nge	r/r	\min^{1}	spring	Rough bore	Min. bore	JIS keyway for max.	Rough bore	Min. bore	e JIS keyway for ma	IX. A	A1	A2	A3	B1	B2	C1	C2
	IN	. 111			number	diamter	diameter	bore dia.	diamter	diameter	bore dia.								
TGF20-L7	5	to 20			2														
TGF20-M7	10	to 40	9	00	4	8	10	20	15	17	42	55	33.5	66.3	199.8	24.5	14	11.2	100
TGF20-H7	20	to 80			8														
TGF30-L7	5 1	to 73.5	5		2														
TGF30-M7	10	to 147	7	40	4	10	12	30	15	17	60	80	47.8	102.5	277.3	33.8	22	11.7	127
TGF30-H7	20	to 294			8														
TGF45-L7	30	to 156			3														
TGF45-M7	60	to 313	6	00	6	20	22	45	25	27	74	95	57.2	110	307.2	43.2	17	16.8	140
TGF45-H7	120	to 568			12														
								N1 screw	O No	of pcs	P screw P	1 screv	v						
Model No.	D	E1	F1	J	К	L	M	diamter ×	- hole c	lia. ×	diamter	diamter	Q*2	Q1	*2 R	*2	R1*2	Т	U
								length	dep	oth	×length	×length	n						
TGF20-L7	_																		
TGF20-M7	23	104	61	98	75	70	33	M5×20	4 - ϕ 5	×6	M4×12	M4×6	M5	M	5	5	8	3	1.2
TGF20-H7																			
TGF30-L7																			
TGF30-M7	39	143	84	130	98	92	48	M6×25	4- <i>φ</i> 7	×7	M6×15	M5×6	M6	M	6 .	5	12	4	1.8
TGF30-H7																			
		1	1	1	1	1													
TGF45-L7																			
TGF45-L7 TGF45-M7	46	168	106	165	132	124	66	M8×25	6- <i>φ</i> 7	×7	M6×20	M5×6	M8	M	8	8	15	4	2.2
TGF45-L7 TGF45-M7 TGF45-H7	46	168	106	165	132	124	66	M8×25	6- <i>ф</i> 7	×7	M6×20	M5×6	M8	M	8	8	15	4	2.2

	V screw	W screw	Mass*4	Moment of inertia ^{*4}	Coupling		Allowak	ole Misal	ignment
Model No.	diamter X longth	diamter	kg	kg·m ²	model No.	X*4	Angular mindiaamaat daa	Shaft direction	Parallel
	<pre>/ lengin</pre>	~ iengin					misolignmeni deg	aispiaceilleill	misalignmeni
TGF20-L7									
TGF20-M7	$M4 \times 8$	—	4.8	0.00586	NEF25W	21	2	± 2.8	1.5
TGF20-H7									
TGF30-L7									
TGF30-M7	$M4 \times 8$	—	12.4	0.0299	NEF80W	29.5	2	± 3.6	2.0
TGF30-H7									
TGF45-L7									
TGF45-M7	$M4 \times 8$	—	19.1	0.0651	NEF130W	20	2	± 5.0	2.1
TGF45-H7									

*1. Contact us for details on use at speeds higher than the maximum speed.

2. Setscrew taps are not processed. Dimensions are for reference only.

3. Mass and moment of inertia are based on the bores' maximum diameters.

4. This is the space required for the insertion of a reamer bolt.

The allowable displacement in the shaft direction is the value when the angular error is zero.

TGF Series

	Set t	oraue	Man		Coil	S	hock G	uard S		Couplir	ng S1								
Model No.	ra N	nge • m	r/n	nin ^{*1}	spring number	Rough bore diamter	Min. bore diameter	JIS keyway for max. bore dia.	Rough bore diamter	Min. bore diameter	JIS keyway for max. bore dia.	. А	A1	A2	A3	B1	B2	C1	C2
TGF65-L7	40 to	o 264			3														
TGF65-M7	80 to	539	4	30	6	30	32	65	45	47	95	120	76.2	147.2	403.4	59.7	22	21.6	180
TGF65-H7	160 to	b 1078	3		12														
TGF90-L7	196 to	b 1225	5		3														
TGF90-M7	392 to	b 2450) 3	30	6	45	47	90	50	52	118	170	101.6	211.2	562.8	76.1	35	27.2	250
TGF90-H7	784 to	b 4900)		12														
								N1 screw	C)	P screw P1	lscrew	,						
Model No.	D	E1	F1	J	К	L	M	diamter × 1 length	√o. of po dia. ×	cs hole depth	diamter d ×length >	liamter < ength	Q*2	QI	*2 R	^{*2}	R1*2	Т	U
Model No. TGF65-L7	D	El	F1	J	K	L	M	diamter × t length	No. of po dia. ×	cs hole depth	diamter d ×length >	liamter < ength	Q*2	Q1	*2 R	2 ^{*2}	R1*2	Т	U
TGF65-L7 TGF65-M7	D 56	E1 214	F1 137	J 210	К 175	L 167	M 0	diamter × 1 length M10×45	No. of pa dia. × 6-φ7:	× 12	$\frac{\text{diamter}}{\times \text{length}} \xrightarrow{\text{diamter}} M6 \times 20$	liamter < ength ∧6 × 8	Q*2	Q1	*2 R	0	R1 ^{*2} 20	Т 5	U 2.7
Model No. TGF65-L7 TGF65-M7 TGF65-H7	D 56	E1 214	F1 137	J 210	K 175	L 167	M 0	diamter × 1 length M10×45	No. of po dia. × 6-φ7?	× 12	$\frac{\text{diamter}}{\times \text{length}} \frac{\text{d}}{\times}$ $\frac{M6 \times 20}{\Lambda}$	liamter < ength ∧6×8	Q*2	Q1 D M1	*2 R 0 1	0	R1 ^{*2} 20	Т 5	U 2.7
Model No. TGF65-L7 TGF65-M7 TGF65-H7 TGF90-L7	D 56	E1 214	F1	J 210	К 175	L 167	M 0	diamter × 1 length M10×45	No. of po dia. × 6-φ7>	cs hole depth × 12	diamter d ×length > M6×20 A	iamter < ength	Q*2	Q1	*2 R 0 1	0	R1 ^{*2}	T 5	U 2.7
Model No. TGF65-L7 TGF65-M7 TGF65-H7 TGF90-L7 TGF90-M7	D 56 93	E1 214 276	F1 137 169	J 210 280	К 175 243	L 167 233	M 0 106 150	diamter × 1 length M10×45 M16×60	No. of po dia. × 6-φ72	2 × 15	M6×20 M M10×30 M	liamter < ength $A6 \times 8$ $A6 \times 10$	Q*2 M10 M12	Q1 D M1 2 M1	*2 R 0 1 2 1	0	R1 ^{*2} 20 30	T 5 8	U 2.7 5.0
Model No. TGF65-L7 TGF65-M7 TGF65-H7 TGF90-L7 TGF90-M7 TGF90-H7	D 56 93	E1 214 276	F1 137 169	J 210 280	К 175 243	L 167 233	M 0 106 150	diamter × 1 length M10×45 M16×60	No. of pa dia. × 6-φ7 6-φ12	× 12 2 × 15	diamter d ×length > M6×20 M M10×30 M	iamter «ength Λ6×8	Q*2 M10 M12	Q1 0 M1 2 M1	*2 R 0 1 2 1	0	R1 ^{*2} 20 30	T 5 8	U 2.7 5.0

Model No.	V screw diamter	W screw diamter ×	Mass ^{*₄} kg	Moment of inertia ^{*4} kg · m ²	Coupling model No.	X*5	Allowak Angular	Shaft direction	ignment Parallel
	× length	length					misalignment deg	displacement	misalignment
TGF65-L7									
TGF65-M7	—	M10×20	42.6	0.236	NEF340W	19.5	2	±6.6	2.7
TGF65-H7									
TGF90-L7									
TGF90-M7	—	M12×35	102	0.954	NEF700W	40	2	± 8.0	3.8
TGF90-H7									

*1. Contact us for details on use at speeds higher than the maximum speed.

2. Setscrew taps are not processed. Dimensions are for reference only.

3. TGF65 uses hex cap countersunk screws, and TGF90 uses hex bolts.

4. Mass and moment of inertia are based on the bores' maximum diameters.

5. This is the space required for the insertion of a reamer bolt.

6. The allowable displacement in the shaft direction is the value when the angular error is zero.

Torque adjustment

- Read the torque scale value that corresponds to the required torque from the torque correlation charts and tighten the adjustment nut (6) to that value. To tighten the adjustment nut (6), hook a hook spanner or insert a round bar in the hole in the periphery of the nut, and then turn the nut.
 - Note) If you are using the TGF30 or TGF45 size and a high torque (200 N · m or higher) is required, use the dedicated hook spanner (sold separately).

If you are using the TGF65 or TGF90 size and a high torque is required, loosen the bolt (8) to adjust the torque, turn the adjustment nut (6) to the required torque scale value, lock the adjustment nut (6) with the hex cap setscrew (13), and then retighten the bolt.

2. When the torque is determined, write down the torque on the name plate so that you can easily set the torque to the previous value even after an overhaul. If you mark matchmarks on both the nut and the edge of the hub, you can reset the torque more precisely.

1

Torque Correlation Chart

Power Lock Mounting Dimensions

The Shock Guard TGF Series can be combined with the Power Lock EL series.

The maximum applicable sizes of the mounting geometries of the TGF series are shown below.

The transmissible torque is the value when using one power lock unit. If using multiple power lock units, multiply the transmissible torque by the coefficients shown in the table on the right.

We will select the appropriate geometry if you designate your shaft dimensions and intended torque.

Mounting geometry a

TOF		T				
Series size	Maximum applicable size	d	D	Р	Bolt	torque Nm
TGF20	-	-	-	-	-	-
TGF30	18×22	18	22	34	$M4 \times 6$	46.1
TGF45	32×36	32	36	50	$M4 \times 8$	123
TGF65	50×57	50	57	73	M6× 8	419
TGF90	71×80	71	80	99	M8×10	1560

Mounting geometry c

TCE	N	Mounting geometry									
Series size	Maximum applicable size	d	D	Bolt	torque Nm						
TGF20	20×25	20	25	M10×1	39.2						
TGF30	32×36	32	36	M 6×3	100						
TGF45	45×52	45	52	M 6×8	321						
TGF65	65×73	65	73	M10×4	813						
TGF90	85×96	85	96	M10×8	2000						

Number of units	coefficient
1	1
2	1.55
3	1.85

Shock Guard TGF Series

Mounting geometry b

TCE		Mounting geometry										
Series size	Maximum applicable size	d	D	Р	Bolt	torque Nm						
TGF20	-	-	-	-	-	-						
TGF30	22×26	22	26	38	M 4×6	55.9						
TGF45	35×40	35	40	55	M 5× 6	167						
TGF65	65×73	65	73	91	$M 8 \times 8$	1140						
TGF90	95×106	95	106	126	$M10 \times 10$	3390						

Mounting geometry d

TOF	٨	Mounting geometry									
Series size	Maximum applicable size	d	D	Bolt	torque Nm						
TGF20	24×28	24	28	M10×1	56.8						
TGF30	36×42	36	42	M 5×6	144						
TGF45	50×57	50	57	M 6×8	397						
TGF65	75×84	75	84	M10×6	1260						
TGF90	100×114	100	114	M12×8	3450						

Shock Guard TGM Series

Features

Highly accurate sealed type. Excels in wet, oily and dusty environments.

Sealed construction

Covered in a special aluminum alloy casing, the TGM Series is sealed, so it is almost impossible for dust, oil or water to penetrate it. Therefore, it does not affect trip torque precision, making it an ideal overload protection device.

Non-backlash

The cam follower and pocket's engagement is a 2 point contact pressed against each other, meaning there is no backlash.

Automatic reset

Once the cause of overload is removed, the Shock Guard automatically moves back to its original position by rotating the input side a little (at less than 50r/min), or by inching the motor.

Long life

LS detecting plate for overload detector

When the Shock Guard trips the LS detecting plate slides in the axial direction, so it is easy to actuate the limit switch, shut off the power or set off the alarm. When tripping it can be used whether it stops on the camshaft side or the housing (Shock Guard case) side. The LS detecting plate can be mounted on all models.

No need to lubricate

The Shock Guard TGM Series is packed in high quality grease before shipment.

One position

Because the cam follower and pocket of the cam shaft engage together, there is no phase shift between the drive side and the driven side.

High precision trip torque

Repetitive motion torque accuracy is within $\pm 5\%$. One (1) high precision cam follower pressurizes tightly from the radial direction in the precisely machined pocket. A highly rigid and stable load rate rectangular spring is used. Trip movement is a rolling movement, so even a repeat trip produces almost no torque variation.

Shock Guard

FGM Series

Easy to use

The camshaft and case can be used on either the drive or driven sides. As well, it can be used in either direction of rotation. For the drive member, you can choose between using a chain, pulley or gear. Assembling with a coupling is also possible. Refer to page 76 to see the assembly of a Shock Guard coupling with a roller chain coupling.

Torque setting is easy

By simply turning the adjustment screw with a hexagon wrench, precise torque can be set. As well, the adjustment nut is on the outer surface of the Shock Guard, so torque setting can be done easily.

1. The cam follower transmits torque by engaging with the camshaft pocket in a radial direction.

When the machine is overloaded, the cam follower pops out of the pocket, and completely separates from the overload.

- 2. The cam follower and pocket are precision machined and heat treated, so it is able to maintain high torque precision for extended periods of time.
- 3. The cam follower and pocket are non-backlash, with a 2-point contact system.
- 4. Using the leverage on one rectangular coil spring pressurizes the cam follower, so it is able to give high precision pressure.

TGM60/200/400/800 models with strong spring specifications and TGM400 and 800 models with standard specifications employ two (2) Coil spring A components.

- 5. Torque level is infinitely adjustable with the adjustment screws. 6. Due to overload, the idling during trip is received by 5 needle
- beerings, so there is no slide, and idling friction torque is minute.
- 7. Because the case and cover are made from a solution treated aluminum, it has a light but strong construction.
- 8. Due to its sealed construction, it is highly difficult for dust, water or oil to penetrate the TGM Series.
- 9. If the Shock Guard trips because of overload, the LS detecting plate slides in the axis direction, so by operating the limit switch, overload detection is easy.
- 1. Torque is transmitted by the engagement of the cam follower and the pocket with a 2 point contact system.

The method to pressurize the cam follower to the cam pocket is to hold it by one rectangular coil spring in a radial direction.

Therefore there is no backlash, allowing it to function as a high trip torque precision overload protection device. Reset is carried out using an automatic reset system, so as the cam follower settles into its pocket position, operation resumes. As it is a two-point contact, there is no phase shift from the original position.

- 2. When overloaded, the cam follower comes out of its pocket and starts rolling on the outer diameter of the camshaft. As there is no slide section, the idling friction torque is small, making it a highly durable device. As well, the simple one position engagement construction of the TGM Series means its high trip torque precision does not diminish.
- 3. When the Shock Guard trips, the LS detecting plate slides in the axis direction. From this point, the limit switch can be actuated and the power can be turned off. The alarm can also be sounded. For each one trip, the LS detecting plate slides three times.

64

Dimensions

Transmissible capacity

I ransmissible capacity												
Mardal NIa	Set torque range	Max. rpm	Bore	Stock bore diameter	Semi-standard bore diameter	Moment of inertia	Mass					
INIODEI INO.	N·m	* r/min	range	H7	H7	imes10 ⁻² kg·m ²	kg					
TGM3	1.5 to 3.7	600	10 to 14	14	10, 12	0.0425	0.6					
TGM6	2.5 to 6.4	600	10 to 14	14	10, 12	0.0425	0.6					
TGM20	6.4 to 20	500	14 to 20	20	14, 16, 18	0.168	1.1					
TGM60	20 to 69	300	20 to 30	30	20, 22, 25, 28	0.938	2.5					
TGM200	68 to 225	200	28 to 50	50	30, 35, 40, 45	4.03	5.4					
TGM400	225 to 451	150	38 to 60		60	40.0	17.2					
TGM800	451 to 902	150	38 to 60	—	60	40.0	17.2					

*1. Cam shafts for semi-standard bore diameters are in stock for quick delivery. 2. The keyway is made with JIS1301-1996 (new JIS standard) dimensions.

Dimensions

Difficitio		3																				Unit	: mm
Model No.	А	В	С	D	E	F	G	H h7	I	J	к	L	м	Р	Q	l 1	l 2	S H7	U	W	Х	Y	Z
TGM3	60	57	2	48	3	80	22	30	50	3	40	8	5	M4	40	4	6	14	16.3	5	4	M 4	8
TGM6	60	57	2	48	3	80	22	30	50	3	40	8	5	M4	40	4	6	14	16.3	5	4	M 4	8
TGM20	70	66	3	57	3	100	30	40	60	4	50	10	6	M4	50	4	7	20	22.8	6	4	M 5	10
TGM60	89	81	3	68	5	133	47.6	60	86	7	73	14	12	M5	76	6	12	30	33.3	8	6	M 6	13
TGM200	110	100	3	85	5	178	69.9	82	133	14	114	20	12	M6	105	7	14	50	53.8	14	6	M10	19
TGM400	157	147	9	131	5	273	88.9	114	190	17	165	28	17	M8	124	7	16	60	64.4	18	8	M12	28
TGM800	157	147	9	131	5	273	88.9	114	190	17	165	28	17	M8	124	7	16	60	64.4	18	8	M12	28

*1. The model numbers in bold are stock items, and the rest are assembled for shipment. 2. The keyway is made with JIS1301-1996 (new JIS standard) dimensions. 3. Minimum torque is set temporariry when shipped.

Semi-standard

1. Torque setting

If necessary, torque can be set at TEM's factory before shipment. Torque setting tolerance is within $\pm 5\%$. The set torque value is on the nameplate, and the adjustment nut is coated with Loctite 242, or its equivalent, and tightened. When ordering, indicate set torque value (kgf \cdot m) after bore diameter. (Please refer to the table on the right)

2. Weak spring and strong spring specifications

For when it is necessary to operate with a trip torque other than the standard torque value range:

- (1) TGM6 and TGM800 do not have weak spring specifications.
- (2) The standard torque range can be replaced by weak or strong spring torque ranges on the nameplate.
- (3) The minimum and maximum torque indicator on the nameplate does not change for the weak and strong springs.
- (4) When ordering, indicate weak spring (WS) or strong spring (SS) in the last part of the product number.

Model No.	Weak spring, torque range N·m kgf·m	Reinforced spring, torque range N·m kgf·m
TGM3(C)	0.59 to 1.5 {0.06 to 0.15}	
TGM6(C)		6.0 to 12.7 {0.61 to 1.3}
TGM20(C)	3.7 to 12 {0.38 to 1.2}	7.3 to 23 {0.74 to 2.3}
TGM60(C)	7.6 to 26 (0.78 to 2.7)	44 to 105 {4.5 to 10.7}
TGM200(C)	30 to 98 {3.1 to 10}	101 to 289 {10.3 to 29.5}
TGM400(C)	118 to 235 {12 to 24}	
TGM800(C)		532 to 1060 {54.3 to 108}

. . .

Coupling type-sprocket combination

Coupling type

This is the Shock Guard and roller chain coupling combination series. It is a Shock Guard with high trip torque accuracy and an easy to use roller chain coupling, all in one. It is ideal for direct coupling between the drive and driven

machines. (In the case it is coupled with a non-backlash coupling, contact TEM for a consultation.)

Transmissible Capacity/Dimensions

H: The space necessary for inserting the joint link

																	0111 . 11111									
Coupling Type Model No.	Set torque range N∙m	Max. rpm * r/min	Shock Gu Standard bore diameter H7	Semi-standard bore diameter H7	Cour bo Rough bore diameter	oling ore Maximum bore diameter	A	В	С	D	E	F	G	н	Sprocket	Mass kg	$\begin{array}{c} \text{Moment of inertia} \\ \times 10^{-2} \text{kg} \cdot \text{m}^2 \end{array}$									
тдмзс	1.5 to 3.7	- 600	14	10.12	12.5	20	00	64.2	5 0	20	<u>00</u>	50	70	0	DC25.20	1 1 2	0.07									
TGM6C	2.5 to 6.4		800	800	800	000	800	000	000	000	800	800	0 14	10,12 12	12.5	12.5 30	90	04.2	5.0	20	80	50	70	7	K355-20	1.12
TGM20C	6.4 to 20	500	20	14,16,18	12.5	32	100	72.2	5.8	22	100	53	82	7	RS35-24	1.78	0.218									
TGM60C	20 to 69	300	30	20,22,25,28	12.5	42	120.6	88.2	7.4	25	133	63	117	17	RS40-26	4.15	1.21									
TGM200C	68 to 225	200	50	30,35,40,45	18	55	163.3	111.7	11.6	40	178	83	188	26	RS60-28	11.8	6.80									
TGM400C	225 to 451	150		40	20	75	221.0	141 4	15 2	45	272	107	251	20	000 20	21	50.0									
TGM800C	451 to 902		150	150	150	150	150	150	150		00	20	75	221.7	101.0	13.3	45	2/3	107	231	20	K300-20	51	50.8		

All model numbers are MTO.
 Apply the lubricant such as molybdenum disulfide to the chain and top of the sprocket teeth periodically (every 2000 hours).

Sprocket combination

When using a sprocket with a drive member, select the appropriate sprocket from the chart below.

This table shows the available sprocket machining dimensions.

			Unit : mm				
Shock Guard	Finished sprocket dimensions						
Model No.	d ^{H7}	D	Y				
TGM3	30	40	4.5				
TGM6	30	40	4.5				
TGM20	40	50	5.5				
TGM60	60	73	6.6				
TGM200	82	114	11.0				
TGM400	114	165	14.0				
TGM800	114	165	14.0				

Note: Verify the chain transmissible capacity when determining the number of sprocket teeth. Note: Insert the joint link from the outside of the sprocket.

Shock Guard

11.5

Torque setting

By simply turning the adjustment screw with a hexagon wrench, precise torque can be set.

 The minimum torque value is set for shipment. The top surface of the adjustment screw is adjusted to the minimum torque (torque indicator 1) printed on the nameplate. This is the base tightening quantity.

- Before setting the torque, apply Loctite 242 or an equivalent adhesive to the exposed surface of the adjustment screw's thread portion. After setting torque, it becomes anti-loosing.
- 3. From the "Tightening Amount-Torque Correlation Chart" (below), find the adjustment screw tightening angle equivalent to the predetermined trip torque and tighten them. Set at 60° toward the determined tightening value, then install to the machine and conduct a trip test. Gradually tighten and set at optimum trip torque. Each product's trip torque does not always correspond with the value listed in the "Tightening Amount - Torque Correlation Chart", so use these values only as a rough

Tightening Amount-Torque Correlation Chart

guide.

- 4. Do not set torque lower than the minimum torque (torque indicator 1 on the nameplate). If it is necessary to use a torque level lower than the minimum, use a weak spring type.
- Do not turn the adjustment screw when the Shock Guard is in a tripped state.
- 6. Torque setting before shipment is available. (Please refer to page 65).

Model No.	Amount of torque variation per one (1) rotation N·m {kgf·m}	Total number of rotations
TGM3	0.28 {0.029}	8
TGM6	0.48 (0.049)	8
TGM20	1.02 {0.10}	13
TGM60	4.90 (0.5)	10
TGM200	9.80 {1.0}	16
TGM400	20.6 (2.1)	11
TGM800	41.2 {4.2}	11

Set torque = min. torque + (amount of torque variation per one (1) rotation X total number of rotations of the adjustment screw)

No. of rotations of the adjustment screw.

No. of rotations of the adjustment screw.

Overload detection

Using the limit switch, overload can be detected easily. If the Shock Guard trips due to overload, the cam follower will disengage from the pocket and the camshaft and main unit (case) will idle. At the same time, the LS detecting plate slides in the axial direction.

The limit switch detects this movement, shuts the power off and sets off an alarm. Whether the stopping side is on the camshaft side or the main unit case side, overload can be detected. For every one trip, the LS detecting plate slides three times.

(1) Table 1 shows LS detecting plate movement and force during trip.

Choose a limit switch from Table 1 that meets the "movement until operation" and its "necessary amount of force".

(2) Diagrams 1 and 2 are limit switch installation examples.

Limit Switch Installation Example

Installation

1. Installing to the axis

- A shaft diameter tolerance of h7 for installing the Shock Guard to the shaft is recommended. Use a JIS 1301-1996 (New JIS standards) parallel key. Allow some clearance between the top of the key and keyway
- When installing the cam actuating plate to the shaft, tighten bolts in three places. (For the key, 1 place; for the shaft, 2 places)
- When mounting the Shock Guard to the end face of the shaft, depending on the installation method, the cam actuating plate set screws cannot be used. In this case use the tap holes on the mounting seat side. Set screws for these tap holes are not included, so use bolts with a length that fits the bore diameter. <u>Take care to ensure that the head of the set screws do not</u> <u>come out from the outer diameter of the camshaft. If the head of the screws come out, they will interfere</u> with the inner diameter and lateral side of the <u>mounting seats when the Shock Guard trips.</u>
- If during operation there is a chance vibration will cause the screws to loosen, apply Loctite 242 or an equivalent for anti-loosening.

- (3) Connect the limit switch's "b contact" parallel to the start button's contact.
- (4) Diagram 3 shows an example of a typical circuit. TEM recommends using a self-holding circuit.

Table 1

Model No.	Amount of movement mm	Force when moving N {gf}		
TGM3	4	3.9 {400}		
TGM6	4	3.9 {400}		
TGM20	4	3.9 {400}		
TGM60	6	3.9 {400}		
TGM200	6	5.4 {550}		
TGM400	8	5.9 (600)		
TGM800	8	5.9 (600)		

Circuit Example

2. Installation of drive member

- By utilizing 3 mounting seats, tighten the bolts with the torque shown in Table 2 to install the sprockets, pulleys, gears and couplings to the housing.
- Refer to page 66 for sprocket installation. If it is necessary to combine a TSUBAKI Power Lock (keyless locking device) with a non-backlash coupling, contact TEM for a consultation.

3. Installation bolts

The screw-in length of the mounting seat installation bolts and their tightening torque recommended values are listed on table. As well, use JIS B1001 2 class and lower class for rough bore for installation bolts.

Model No.	Bolt screw-in length (mm)	Bolt tightening torque N \cdot m $ kgf \cdot m $	Prepared hole diameter for installation bolt (mm)
TGM3	6 to 7	2.0 to 2.9 {0.2 to 0.3}	4.5
TGM6	6 to 7	2.0 to 2.9 {0.2 to 0.3}	4.5
TGM20	8 to 9	3.9 to 5.9 {0.4 to 0.6}	5.5
TGM60	9 to 11	6.9 to 11 {0.7 to 1.1}	6.6
TGM200	15 to 17	34 to 51 {3.5 to 5.2}	11.0
TGM400	18 to 25	59 to 89 {6.0 to 9.1}	14.0
TGM800	18 to 25	59 to 89 {6.0 to 9.1}	14.0

Table 2

4. Connecting

The input/output connection is placed between the variator, reducer or intermittent drive device and the device/machine. Diagrams 4, 5 and 6 show typical connecting examples.

Resetting

As it is an automatic reset system, just re-starting the drive side can automatically reset it.

- 1. When the Shock Guard trips due to overload, stop the rotation and remove the cause of the overload.
- When resetting, reset (re-engage) with input rpm at less than 50r/min or by inching the motor. To avoid injury, do not reset the Shock Guard main unit or the shaft by hand.
- 3. A distinct clicking sound is made when the cam follower settles in its pocket.

Grease

Shock Guard TGM Series are packed in high quality grease before shipment, so they can be used as is. Under normal conditions greasing is not necessary.

Grease used:

EMG Marketing	Mobilux EP-2
------------------	--------------
MEMO

Shock Guard TGZ Series

Features

TGZ Series can be used as a simple layout release type protection device or an ON-OFF clutch.

Release type

After tripping due to overload, the input side freely rotates. Even a high-speed shaft can be operated worry-free.

Resetting by external force

After the Shock Guard has been stopped, remove the cause of overload. Then give load to the axial direction manually or with external force.

ON-OFF function

The rotation (ON) or shut-off (OFF) functions are available arbitrarily. They can be used as an accurate mechanical type ON-OFF clutch.

Easy torque adjustment

Just by turning the adjustment nut, trip torque can be easily set.

Easy to see torque indicator

By using the revolution indicator and angle indicator, set torque can be monitored at any time.

One position type

This uniquely assembled torque transmission element ball and pocket configuration only engages in one position.

Operating Principles

During normal operation (engagement)

Torque transmission is made by a drive ball which is pressurized and retained at the hub pocket and the driven flange.

The non-symmetric arrangement of the balls and pockets allows only one engagement position per one rotation, and there is no phase shift after tripping.

During overload (trip)

When overloading (when OFF), a drive ball instantly pops out of its pocket, and the plate and a steel ball simultaneously move to the adjustment nut side.

A drive ball comes completely out of its pocket and a steel ball enters the hub outer circumference V-groove, and the pressure from the springs is not transferred to the plate. Therefore, a drive ball freely rotates without returning to the pocket.

Construction

Applications classified by use

1. Overload protection

2. ON-OFF clutch

	(ON	Ì
OFF-ON Amount of	6	
movement	H	
ON→OFF		/
End plate		

Necessary shaft direction load when ON-OFF

Actuation Model No.	OFF → ON N {kgf}	ON → OFF N {kgf}	Amount of movement mm
TGZ20-L	49 { 5}	245 { 25}	
TGZ20-M	88 { 9}	431 { 44}	4.1
TGZ20-H	176 {18}	862 { 88}	
TGZ30-L	98 {10}	470 { 48}	
TGZ30-M	235 {24}	1176 {120}	4.7
TGZ30-H	470 48	2352 240	

Actuation Model No.	OFF → ON N {kgf}	ON → OFF N {kgf}	Amount of movement mm				
TGZ40-L	157 { 16}	774 { 79}					
TGZ40-M	421 { 43}	2087 {213}	5.9	Axial load			
TGZ40-H	833 { 85}	4155 {424}		depending on			
TGZ50-L	451 { 46}	2269 {231}		actuations and			
TGZ50-M	902 { 92}	4518 461	7	usage conditions. Set			
TGZ50-H	1382 {141}	6919 {706}		the load with			

OFF

As demonstrated in the diagram on the left, the TGZ Series can be installed with any motor shaft, reducer (variator) or other machines. When considering the layout, make sure to leave sufficient space to adjust torque and for resetting procedures. After removing the cause of overload, do not reset the machine while it is running.

 \triangle If the Shock Guard is reset during rotation, the machine will suddenly run.

By using manual or mechanical external force (pneumatic, hydraulic, etc.), the plate can be moved, cutting off the input rotation (OFF) or transmitting it (ON). The necessary axial load for turning the machine ON or OFF is written in the table below.

Transmissible Capacity/Dimensions Shock Guard (TGZ Series)

① Hub ② Center flange ③ Driven flange ④ Plate ⑤ Ball cage ⑥ Adjustment nut

(7) Ball bearing (8) Drive ball (Steel ball) (9) Coil spring (10) Snap ring for bore (11) Snap ring for shaft

[®] Lock screw [®] Hexagon socket head bolt [®] Spring washer [®] Hexagon socket head set screw
 ^{*} Adjustment nut for fixing the lock screw (1) is included with the Shock Guard. After setting appropriate torque, tighten with the

following torque to avoid interference with the pocket of hub. Lock screw size: M5...3.8N·m[38.7kgf·cm] M8...16N·m[163kgf·cm]

																Un	it : mm
Shock Guard Model No.	Set torque range N∙m	Max. rpm r∕min	Coil spring color X the number	Rough bore diamter	Min. bore diameter	Max. bore diameter	А	В	С	D	E	F	G min. point position	Н	l amount of movement during trip	J	K PCD
TGZ20-L	2.4 to 8.3		Yellowx3		10												
TGZ20-M	4.1 to 16	1800	Blue ×3	8		20	74	73	1	8	6	13.5	0.8	11	4.1	96	86
TGZ20-H	8.2 to 31		Blue ×6														
TGZ30-L	5.9 to 21		Yellowx4			30	83.5	82	1.5		6	14.5	1.1	11.5		118	106
TGZ30-M	20 to 52	1800	Red ×4	12	14					8					4.7		
TGZ30-H	39 to 108		Red ×8														
TGZ40-L	25 to 93		Blue ×5														
TGZ40-M	44 to 127	1800	Red ×5	17	19	40	.0 101	100	1	9	8	20	1.1	14	5.9	152	139
TGZ40-H	88 to 245		Red ×10														
TGZ50-L	63 to 157		Red ×5														
TGZ50-M	127 to 304	1800	Red ×10	22	24	50	114.5	112	2.5	10	9	20.2	1.2	16	7	178	162
TGZ50-H	245 to 451		Greenx10														

Shock Guard Model No.	L h7	м	Ν	Р	Q	R	S	Т	U screw diameter X length	V	w	X screw size X length	Y screw size X length	* Mass kg	* Moment of inertia ×10 ⁻² kg⋅m²
TGZ20-L															
TGZ20-M	72	35	24.5	32	57	70	88	4	M5 imes 10	5	10	M5×10	M5×10	2.57	0.273
TGZ20-H															
TGZ30-L															
TGZ30-M	87	45	27.5	45	75	88	108	4	M6 imes 12	6	10	M5×10	M6×10	4.17	0.695
TGZ30-H															
TGZ40-L															
TGZ40-M	114	65	32.5	65	103	119	141	6	M6 imes 12	8	14	M8×10	$M8 \times 10$	8.71	2.40
TGZ40-H															
TGZ50-L															
TGZ50-M	133	75	37	75	113	138	166	6	$M8 \times 16$	9	14	M8×10	$M8 \times 10$	13.7	5.30
TGZ50-H															

*1. All products are stock items.

2. Mass and moment of inertia are based on the bores' maximum diameters.

Coupling type

Combined with TSUBAKI "Jaw Flex Coupling L Series"

① Coupling hub A ② Coupling hub B ③ Insert ④ Adapter
 ⑤ Hexagon socket head bolt ⑥ Spring washer ⑦ Hexagon socket head bolt ⑧ Spring washer

														ι	Jnit : mm					
Shock Guard	Set torque range	Max. rpm	She	ock Gu	ard	C	Coupling	9	•	D	C	6	0.1	0.2	E					
Model No.	N∙m	r/min	Rough bore diamter	Min. bore diameter	Max. bore diameter	Rough bore diamter	Min. bore diameter	Max. bore diameter	A	D	C	D	Ŀ'	k -	E					
TGZ20-LC	2.4 to 8.3																			
TGZ20-MC	4.1 to 16	1800	8	10	20	12.7	16	35	146	83	18.8	27.2	27	73	_					
TGZ20-HC	8.2 to 31																			
TGZ30-LC	5.9 to 21																			
TGZ30-MC	20 to 52	1800	1800	1800	1800	1800	1800	12	14	30	18.0	21	47	180	93.5	22.6	32.5	42.9	82	_
TGZ30-HC	39 to 108																			
TGZ40-LC	25 to 93																			
TGZ40-MC	44 to 127	1800	17	19	40	19.1	22	58	213	111	26.1	32.9	54	100	34.9					
TGZ40-HC	88 to 245																			
TGZ50-LC	63 to 1 <i>5</i> 7																			
TGZ50-MC	127 to 304	1800	22	24	50	19.1	22	63	242	127.5	26.1	40.4	63.5	112	34.9					
TGZ50-HC	245 to 451																			

Shock Guard Model No.	F	G	н	I No. of pieces- screw size X length	J No. of pieces- screw size X length	* Mass kg	* Moment of inertia $\times 10^{-2}$ kg·m ²	Model No. of coupling used	К	Allowable angular misalignment (deg.)	Allowable parallel misalignment	Allowable shaft direction displacement
TGZ20-LC												
TGZ20-MC	96	64.3	—	3-M6×20	4-M5×22	4.34	0.44	L099-H	27	0.5	0.38	±0.5
TGZ20-HC												
TGZ30-LC												
TGZ30-MC	118	84.1	—	6-M6×22	4-M6×22	7.77	1.22	L110-H	40	0.5	0.38	±0.7
TGZ30-HC												
TGZ40-LC												
TGZ40-MC	152	114.3	101.6	6-M6×25	6-M6×25	15.4	4.05	L190-H	54	0.5	0.38	±1.0
TGZ40-HC												
TGZ50-LC												
TGZ50-MC	178	127	107.9	6-M8×25	6-M8×25	23.2	8.63	L225-H	60	0.5	0.38	±1.0
TGZ50-HC												

*1. All products are stock items.

2. Mass and moment of inertia are based on the bores' maximum diameters.

Shock Guard

Handling

1. Bore finishing (Shock Guard)

(1) Before finishing

The Shock Guard TGZ Series is shipped set at the minimum point (minimum torque value). Once received, confirm that the revolution indicator and angle indicator are set at zero.

(2) Disassembly

Loosen the setscrews, remove the adjustment nut and take out the coil springs, ball cage, plate and balls. Next, take out the shaft snap ring, and remove the bearing and driven flange. When disassembling, take care not to lose the ball B at s ball cage. Make sure the Shock Guard parts do not become dusty or dirty.

(3) Chucking

Chuck the hub flange's outside diameter and center the hub portion. (4) Machining

① Keyway specifications

Table 1 shows the maximum bore diameters for keyway specifications.

Table 1

Model No.	Max. bore diameter	Applicable standard
TGZ20	$\phi 20$	parallel key
TGZ30	$\phi 30$	1 5
TGZ40	$\phi 40$	New JIS
TGZ50	ϕ 50	Old JIS

⁽²⁾ Centering

Chuck the hub flange's outer edge and center the hub as shown in the figure on the right.

2. Bore finishing (Coupling type)

(1) Machining

① Keyway specifications

Table 3 shows the maximum bore diameters on the coupling side. For the maximum bore diameters of the Shock Guard hub, refer to Table 1.

② Centering

Chuck the coupling hub's outer edge and center the hub as shown in the below diagram. For the recommended positions of the coupling hub setscrew, refer to Table 4 (Length F).

③ Machining

The keyway should be machined directly below the setscrew tap at the hub flange section as shown below.

Model No.	А
TGZ20	24.5
TGZ30	27.5
TGZ40	32.5
TGZ50	37.0

(5) Reassembly

After bore finishing is completed and when reassembling the Shock Guard, make sure to coat the drive balls, steel balls, pockets, and the V-groove with grease.

Table 3

Model No.	Max. bore diameter	Applicable standard
TGZ20	φ 35	Parallel kev
TGZ30	$\phi 47$	-
TGZ40	ϕ 58	New JIS
TGZ50	$\phi 63$	Old JIS

Table	4
-------	---

Model No.	Coupling model No.	Length F
TGZ20-C	L099-H	13.5
TGZ30-C	L110-H	20.5
TGZ40-C	L190-H	25.5
TGZ50-C	L225-H	25.5

N۰m

- **3. Trip Torque setting** (1) Shock Guard TGZs are all shipped with torque set at the minimum point (min. torque value). Confirm that the angle indicator and the No. of rotations indicator are set at zero. The No. of rotations indicator can be read at the end face of the adjustment nut. Refer to page 73 for more information.
- (2) From the "Tightening Amount-Torque Correlation Chart", find the adjustment nut tightening angle equivalent to the predetermined trip torque and tighten them. Set at 60° toward the determined tightening value, then install to the machine and conduct a trip test. Gradually tighten and set at optimum trip torque.
- (3) After setting torque, screw the lock screw to the adjustment nut. Refer to page 32 for lock screw tightening torque and precautions.
- (4) Do not turn the adjustment nut (bolt) more than the torque indicator's maximum value. Doing so will put it in a locked position, and there will be no leeway for the disk spring to bend.
- Each product's trip torque does not always correspond with the value listed in the "Tightening Amount -Torque Correlation Chart", so use these values only as a rough guide.

4. Resetting

Match up one hole of the driven flange with the hub side's setscrew position. (This position is the pocket and drive ball's correct phase.)

250 200 150 M(C L(C 100 50 -No. of ro indicator 120° 240° 0° 120° 240° 0° TGZ 50(C) 500 -400 300 200 100 of r No. of rotations indicator Angle indicator

Next, apply axial load to the plate to reset (refer to the following table). To determine whether the Shock Guard has completely reset, verify it using the measurements of the table below (displacement A).

Model No.	Axial load N {kgf}	Amount of displacement A mm	B mm		
TGZ20-L	49 [5]				
TGZ20-M	88 {9}	4.1	13.5		
TGZ20-H	176 {18}				
TGZ30-L	98 {10}				
TGZ30-M	235 {24}	4.7	14.5		
TGZ30-H	470 {48}				
TGZ40-L	157 {16}				
TGZ40-M	421 {43}	5.9	20.0		
TGZ40-H	833 [85]				
	451 46				
TGZ50-M	902 {92}	7.0	18.2		
TGZ50-H	1382 {141}				

Maintenance

Grease the drive ball and ball cage either once per year or every thousand trips.

ordue

Shock Guard

Special Specifications

TGXZ Series

Non-backlash and complete release type. With its high-speed specifications (up to 1800r/min), it is ideal for when instant stop is not possible. Please contact TEM for more information.

TGZ Large Series

For the application of setting torque $451\mathrm{N}$ \cdot m and above, please contact TEM for more information.

TGZ Series

ME	ΜO
----	----

 iuard
hock G
····· 07

Shock Guard TGK Series

(Ex-MYTORQ 630 Series)

Features

A multifunctional product combining a ball type overload protection device and an air clutch function.

Pneumatic torque adjustment mechanism

You can remotely adjust the torque during operation by adjusting the air pressure in the regulator.

One position type

This uniquely assembled torque transmission element ball and pocket configuration only engages in one position.

High accuracy

Achieves minimal backlash.

Air clutch ON-OFF mechanism

Also usable as an ON-OFF clutch in remote control.

	TGK
Type 2	Enables direct mounting of A type sprockets and pulleys.
Type 5	The Echt-Flex Coupling provides angular tolerance. Parallelism errors are not allowed.
Type 7	The Echt-Flex Coupling provides angular tolerance and parallelism tolerance.

TGK20 to 45

During normal operation (engagement)

The TGK series transfers driving force from the hub to the drive plate on the output side via drive balls (and vice versa).

Bolt a sprocket or timing pulley directly to the drive plate.

The hub flange has several holes to hold the drive balls.

There are pockets on the drive plate on the output side, and the drive balls are fitted into

the pockets.

If you feed air into the cylinder through the air supply port, the piston moves toward the drive plate.

Then, the drive balls are pushed via the slide plate and transfer the driving force.

You can change the torque according to the load during operation. You can also change the torque automatically by making a system to change the pressure using a timer or controller.

For instance, by using such a system to switch between a high torque corresponding to the starting torque and a low operating torque, you can set the torque to the optimal value for the machine.

When an overload occurs, the drive balls push back the slide plate toward the cylinder against the air pressure. The drive balls then come out of the pockets and start to idle.

During overload (trip)

By detecting the amount of movement of the sensor target toward the cylinder by a limit switch and removing the force applied to the drive balls by removing the air from the cylinder, you can completely release the driving force and protect the machine.

Clutch mechanism

To disconnect the drive source for adjustment or maintenance of the machine, stop feeding air and remove the air from the cylinder. The housing and slide plate are then pushed back toward the cylinder by the built-in spring.

Consequently, the drive balls come out of the pockets on the drive plate for declutching.

The drive plate has a bearing inside, and therefore there are no problems even if the drive plate is left to idle for a long period of time.

Resetting (clutching) procedure

If you supply air from the air supply port and restart the operation, the drive balls automatically return to their positions within one revolution.

If you continue to rotate the TGK series while feeding air after the occurrence of an overload, the TGK series repeatedly reset. Therefore, detect overloads using a limit switch or a similar device and stop feeding air.

																			-	
Model No.	Set torc N	ue range • m	Max r/r	k. rpm min ^{*1}	Air j	oressure MPa	Rough bore diamter	Shock Min. bo diamet	Gu ore er	i <mark>ard S</mark> JIS keywa bore	y for max. e dia.	A	В	С	D	E	F	G P.C.D.	H h6	I
TGK20-A2	15	to 65	3	40	0.14	to 0.55	8	10)	2	0	79	11	3.5	45.5	88	80	70	57	51
TGK30-A2	30	to 147	2	30	0.14	to 0.55	10	12	2	3	0	95	13	5.5	53	115	100	90	75	69
TGK45-A2	90	to 392	4	30	0.14	to 0.55	20	22		4	5	124	15.5	7	74.4	159	140	125	100	94
Model No.	J1	L1	М	N so diamo len	crew eter × gth	O1 scre diameter length	ew r× i	02	С	03	04	Q s diar	crew neter ^{*2}	R*2		U	U	A I	ir supply port Y ^{*3}	Y1
TGK20-A2	61	88	30	M5>	×9	M5×1	0	21	13	5°	90°	٨	۸5	5		1.2	1.	8	4	21
TGK30-A2	75	115	45	M6>	×11	M6×1	2	23	13	5°	90°	٨	۸6	5		1.8	2.	0	8	23
TGK45-A2	98	159	60	M8>	×13	M8×1.	5	34	12	0°	90°	٨	/ 8	8		2.2	2.	9	8	34

Model No.	Screw diamter × length	Z Facing diameter × Depth	Z1	Z2	Mass ^{*₄} kg	Moment of inertia ^{*4} kg · m ²	Allowable radial load N
TGK20-A2	M4×10	ϕ 5 × 3.5	15	35	2.3	0.00061	6200
TGK30-A2	M4×10	ϕ 5 × 4.5	16.5	45	4.6	0.00201	9500
TGK45-A2	M5×10	φ6×5	20	65	11.2	0.00854	12700

*1. Contact us for details on use at speeds higher than the maximum speed.

2. Setscrew taps are not processed. Dimensions are for reference only.

3. Y represents the outer diameter of the applicable tube.

4. Mass and moment of inertia are based on the bores' maximum diameters.

Note) When installing a pulley or sprocket, use high-tensile bolts (G10.9 or higher) and determine the length carefully so that the bolts are not buried deeper than the mounting tap depth N.

The air supply port is a pipe joint applicable to both nylon and urethane tubes.

An example of the installation of a limit switch is shown on page 84.

TGK Series

														1					-		
	Set torau		Max	rom	Air pro	scuro	Sh	ock Gu	ard S		C	oupling	J S1								
Model No.	N ·	m	r/mi	n*1	MP	a	Rough bore	Min. bore	JIS keyway fo	rmax. Roug	gh bore	Min. bore	JIS keyway for max.	A	A1	A2	A3	B1	B2	C1	D
			,				diamter	diameter	bore dia	. dia	amter	diameter	bore dia.								
TGK20-A5	15 to	o 65	34	0	0.14 to	0.55	8	10	20	1	5	17	42	79	33.5	88.3	133	24.5	14	11.2	45.5
TGK30-A5	30 to	b 147	23	0	0.14 to	0.55	10	12	30	1	5	17	60	95	47.8	115.5	175	33.8	22	11.7	53
TGK45-A5	90 to	o 392	43	0	0.14 to	0.55	20	22	45	2	25	27	74	124	57.2	137.5	211.5	43.2	17	16.8	74.4
Model No.	E1	F1	J1	L1	м	N1 scr diamter lengt	ew O ·× d h >	1 screw iameter < length	02	O3	0	A diam ×ler	rew Q screw eter diameter 1gth	Q1 screv diameter *2	R*2	R1	*2	U	U1	Air supply port Y ^{*3}	Y1
TGK20-A5	104	61	61	88	30	M5×	20 M	5×10	21	135°	90	D° M4	×6 M5	M5	5	8	3 1	.2	1.8	4	21
TGK30-A5	143	84	75	115	5 45	M6×	25 M	6×12	23	135°	90	D° M5	×6 M6	M6	5	12	2 1	.8	2.0	8	23
TGK45-A5	168	106	98	159	60	M8×	25 M	8×15	34	120°	90	D° M5	×6 M8	M8	8	15	5 2	.2	2.9	8	34

	7	7		Mass ^{*4} Moment of inertia ^{*4}		Courding		Allowable Misalignment				
Model No.	Screw diamter × length	Facing diameter × Depth	Z1	Z2	kg	kg · m ²	model No.	Χ*5	Angular misalignment deg	Shaft direction displacement*6		
TGK20-A5	M4×10	φ5×3.5	15	35	4.2	0.00319	NEF25S	21	1	±1.4		
TGK30-A5	M4×10	ϕ 5 × 4.5	16.5	45	9.9	0.0164	NEF80S	29.5	1	±1.8		
TGK45-A5	M5×10	ϕ 6 × 5	20	65	18.4	0.0359	NEF130S	20	1	±2.5		

*1. Contact us for details on use at speeds higher than the maximum speed.

2. Setscrew taps are not processed. Dimensions are for reference only.

3. Y represents the outer diameter of the applicable tube.

4. Mass and moment of inertia are based on the bores' maximum diameters.

5. This is the space required for the insertion of a reamer bolt.

6. The allowable displacement in the shaft direction is the value when the angular error is zero.

Note) The air supply port is a pipe joint applicable to both nylon and urethane tubes. An example of the installation of a limit switch is shown on page 84.

Parallelism errors are not allowed.

82

																					UIII	
Model No.	Set torqu N	ue range • m	Max. r/m	rpm in ^{*1}	Air pre MP	essure a	Sh Rough bore diamter	ock Gu Min. bore diameter	ard S JIS keyway bore d	for max. Ro	Cough bore diamter	oupling Min. bore diameter	S 1 JS keyway for max. bore dia.	A	A1	A2	A3	B1	B2	C1	C2	D
TGK20-A7	15 te	o 65	34	.0	0.14 to	0.55	8	10	20	C	15	17	42	79	33.5	88.3	221.8	24.5	14	11.2	100	45.5
TGK30-A7	30 te	o 147	23	0	0.14 to	0.55	10	12	30	C	15	17	60	95	47.8	115.5	290.3	33.8	22	11.7	127	53
TGK45-A7	90 te	o 392	43	0	0.14 to	0.55	20	22	45	5	25	27	74	124	57.2	137.5	334.7	43.2	17	16.8	140	74.4
Model No.	E1	F1	J1	L1	м	N1 scru diamter lengtl	ew O ·× d h →	1 screw iameter length	02	03	0	P1 scre 4 diame ×leng	ew Q screw ter diameter th	Q1 scre diamete	w er R [*]	² R	21 ^{*2}	U	U1	Air s poi	upply t Y ^{*3}	Y1
TGK20-A7	104	61	61	88	30	M5×	20 M	5×10	21	135°	90)° M4×	6 M5	M5	5	5	8	1.2	1.8	3.	4	21
TGK30-A7	143	84	75	115	45	M6×	25 M	6×12	23	135°	90)° M5×	6 M6	M6	5		12	1.8	2.0		8	23
TGK45-A7	168	106	98	159	60	M8×	25 M	8×15	34	120°	90)° M5×	6 M8	M8	8	;	15	2.2	2.9		8	34
		7														All	ował	ole Mi	isalia	nmer	nt	

Model No.	Srew diamter × length	Facing diameter × Depth	Z1	Z2	Mass ^{*₄} kg	Moment of inertia ^{*4} kg · m ²	Coupling model No.	Χ*5	Angular misalignment deg	Shaft direction displacement ^{*6}	Parallel misalignment
TGK20-A7	M4×10	ϕ 5 × 3.5	15	35	5.7	0.00540	NEF25W	21	2	±2.8	1.5
TGK30-A7	M4×10	ϕ 5 × 4.5	16.5	45	13.8	0.0276	NEF80W	29.5	2	±3.6	2.0
TGK45-A7	M5×10	ϕ 6 × 5	20	65	23.5	0.0573	NEF130W	20	2	±5.0	2.1

*1. Contact us for details on use at speeds higher than the maximum speed.

2. Setscrew taps are not processed. Dimensions are for reference only.

3. Y represents the outer diameter of the applicable tube.

4. Mass and moment of inertia are based on the bores' maximum diameters.

5. This is the space required for the insertion of a reamer bolt.

6. The allowable displacement in the shaft direction is the value when the angular error is zero.

Note)The air supply port is a pipe joint applicable to both nylon and urethane tubes.

An example of the installation of a limit switch is shown on page 84.

Torque adjustment

You can adjust the torque precisely by adjusting the air pressure corresponding to the required torque. To adjust the air pressure, use a regulator (pressure controller), refer to the torque correlation charts, and feed air into the cylinder of the TGK series. You can even change the operating torque during operation by changing the air pressure. Operating air pressure: 0.14 to 0.55 MPa

(Note) Be careful to keep the air supply source pressure higher than the preset pressure.

Size	Minimum torque N \cdot m	Maximum torque N · m
TGK20	15.0	65.0
TGK30	30.0	147
TGK45	90.0	392

Torque Correlation Chart

Limit Switch Installation Example (Standard option)

Air control system

The operating torque of existing protection devices cannot be changed during operation.

However, it is possible to change the operating torque of the TGK series during operation by changing the air pressure. Therefore, you can protect the machine by setting the torque higher than the starting torque only at startup, and then change the torque to the optimal value at a later time (refer to the figure on the right).

Upon request, the product is delivered with a limit switch installed.

Size	LA	LB	LC	LD	LE	Model of limit switch (Omron)
TGK20	73.5	17.5	59	71.5	16.2	
TGK30	73.5	17.5	73.5	86	10.2	SHL-Q55
TGK45	73.5	17.5	95.5	108.5	_	

Shock Guard

Single air control system

This system is for simple torque adjustment. You can adjust the torque within an air pressure range of 0.14 to 0.55 MPa.

Air device configuration

Part number	Device name	Referential model number (SMC)
1	Air filter	AF20-02
2	Regulator	AR20-02
3	Pressure gauge	G36-02
4	Spacer with bracket	Y200T
5	—	_
6	—	_
7	3-port solenoid valve	VT307-1G-02
8	Silencer	AN20-02
9	Pressure switch	IS3000-02

Electrical diagram

PB 1	Motor start button
PB2	Motor stop button

- SS1 Selecting switch
- SS2 Pressure switch
- S 1 Solenoid valve

Basic operation

Selecting switch (SS1) is set to "AIR ON."

Press the motor start button (PB1). The motor starts and the TGK series returns to the "CLUTCH ON" state. The limit switch is turned on, the self-holding of the motor is completed, and the motor continues to rotate even if you release the motor start button (PB1)

Note) If the pressure switch is off, the motor does not rotate even if you press the motor start button (PB1).

The sensor target of the TGK series moves simultaneously when an overload occurs, and the amount of movement is detected by a limit switch or a similar device.

If the limit switch is turned off, the solenoid valve (S1) switches to turn off the self-holding of the motor, and then the motor stops.

In the "CLUTCH OFF" state, you can do this by turning the selecting switch (SS1) to "AIR OFF." When turned to "AIR OFF," the solenoid valve switches, the air supply to the TGK series stops, the TGK series turns to "CLUTCH OFF," and the motor continues to rotate, but the driving force is not transferred to the driven side.

85

Electrical diagram

Dual air control system

This system uses two regulators. At the time of startup, the regulator set to the higher pressure feeds air to the TGK series. A timer is used to count several seconds (1 to 10 seconds), and then the regulator set to the lower pressure is switched in order to reset the torque to the optimal value. Such a system enables various types of automatic torque adjustments during operation.

Air device configuration

Part number	Device name	Referential model number (SMC)
1	Air filter	AF20-02
2	Regulator	AR20-02
3	Pressure gauge	G36-02
4	Spacer with bracket	Y200T
5	Spacer	Y200
6	T type spacer	Y210-02
7	3-port solenoid valve	VT307-1G-02
8	Silencer	AN20-02
9	Pressure switch	IS3000-02

Electrical diagram

PB 1	Motor	start	button

- PB2 Motor stop button
- SS1 Selecting switch
- SS2 Pressure switch
- S1 Solenoid valve 1
- S2 Solenoid valve 2

Basic operation

Selecting switch (SS1) is set to "AIR ON."

Press the motor start button (PB1). The motor starts and the TGK series returns to the "CLUTCH ON" state. The limit switch is turned on, the self-holding of the motor is completed, and the motor continues to rotate even if you release the motor start button (PB1)

Note) If the pressure switch is off, the motor does not rotate even if you press the motor start button (PB1).

The sensor target of the TGK series moves simultaneously when an overload occurs, and the amount of movement is detected by a limit switch or a similar device.

If the limit switch is turned off, the solenoid valve (S1) switches to turn off the self-holding of the motor, and then the motor stops.

In the "CLUTCH OFF" state, you can do this by turning the selecting switch (SS1) to "AIR OFF." When turned to "AIR OFF," the solenoid valve switches, the air supply to the TGK series stops, the TGK series turns to "CLUTCH OFF," and the motor continues to rotate, but the driving force is not transferred to the driven side.

Electrical diagram

Features

Traditional friction type Economically priced and easy to use

Easy torque adjustment

Slip torque setting and adjusting can be done by simply tightening the adjusting nut or bolts. The friction of the friction facings and the center member transmits torque, so overload is guaranteed to cause the Torque Limiter to slip, thus protecting the machine.

Automatic reset

If overload occurs the Torque Limiter will slip. If overload is removed it will automatically reset and begin to rotate. Because there are no parts to replace like a shear pin, the Torque Limiter requires little labor to keep it operating.

Can be fixed to each type of drive

Sprockets and gears can be fixed to the center member.

A wide variety of Torque Limiters are available

From small capacity to large, all standard models can be used in all transmission conditions.

Finished bores for quick delivery

Finished bore products can be made for quick delivery. (Refer to pages 91, 93)

Series

Torque Limiter

Once attached to the shaft, torque transmission is conveyed through roller chains, belts and gears.

Torque Limiter with sprocket

The torque of finished bore Torque Limiters with machined sprockets is factory pre-set.

Torque Limiter coupling

A combined Torque Limiter and roller chain coupling.

Construction and operating principles

- During normal operation, the disk spring inserted between the center member (sprockets and gear) and friction facings applies pressure to the center member. Below the set torque, the frictional force transmits rotation.
- If the operational torque exceeds the set torque due to overload, the center member will slip between the friction facings. When overload is stopped, it automatically resets.

Size No. of disk springs

When using the Torque Limiter

Before installing a Torque Limiter rough bore product to the shaft, it is necessary to finish the bore, keyway and center member as well as torque setting.

• Refer to page 96 for more information on Torque Limiter selection and center member selection/machining.

- Before assembling the Torque Limiter, remove any oil, rust or dust from the hub, friction facings, plate or center member (sprockets and gear).
- Refer to page 94 for more information on setting torque.
- When the direction of rotation is reversed, it will cause backlash. Use the Shock Guard TGX series for machines for which backlash is not allowed.
- If the friction coefficient decreases, the slip torque also decreases. Therefore, be careful to keep the friction facings free of water and oil. However, tightening the adjustable nut too firmly may apply excessive load to the friction facings via the disk spring and break the facings.
- Slipping at a high speed may cause the friction facings to become extremely hot, which will lead to surface carbonization and deterioration of strength. Therefore, do not use the product at speeds higher than the maximum rotation speed.

Transmissible capacity/dimensions

																			Uni	it : mm
	Set torque range	Max rom	Rough	Min.	Max.	Bush	Bush outer	Contor mombor						D	imensic	ons				Mass
Model No.	N∙m	(r/min)	bore diameter	bore diameter	bore diameter	length	diameter	bore diameter	D	$D_{\!\scriptscriptstyle H}$	L	l	Т	t	S max.	А	С	Adjustable nut diameter X pitch	Set screw diameter	kg
TL200-IL	1.0 to 2.0					20														
TL200-1	2.9 to 9.8		7	10	14	3.0 4.0	30	$30^{+0.03}_{-0}$	50	24	29	6.5	2.6	2.5	7	—	38	M24×1.0	_	0.2
TL200-2	6.9 to 20					0.0														
TL250-IL	2.9 to 6.9					4.5														
TL250-1	6.9 to 27	1,800	10	12	22	4.5	41	41 ^{+0.05}	65	35	48	16	4.5	3.2	9	4	50	M35×1.5	M5	0.6
TL250-2	14 to 54					0.5														
TL350-IL	9.8 to 20					4.5														
TL350-1	20 to 74		17	18	25	6.5	49	49 ⁺ ^{0.05} ₀	89	42	62	19	4.5	3.2	16	6	63	M42×1.5	M6	1.2
TL350-2	34 to 149					9.5														

Note: 1. The products in bold are stock items. The rest are MTO.

2. The hexagon socket head set screw is included.

3. On TL200, setting to the shaft by hexagon socket head set screw is not possible. Use a snap ring for the shaft or end plate.

4. The torque values above are values for continuous slip torque, intended for protecting the equipment from overload.

5. For the selection of bush length, refer to the Selection page.

6. The mass is that of one with the maximum bore diameter.

																			Uni	it : mm
	Set torque range	Max rom	Rough	Min.	Max.	Bush	Bush	Center member							Di	mens	ions			Mass
Model No.	N∙m	(r/min)	bore diameter	bore diameter	bore diameter	length	outer diameter	bore diameter	D	D _H	L	l	Т	t	S Max	А	Adjustable nut diameter X pitch	Adjustable bolt diameter X pitch	Set screw diameter	kg
TL500-1L	20 to 49					4.5														
TL500-1	47 to 210		20	22	42	0.5	74	$74^{+0.05}_{-0}$	127	65	76	22	6	3.2	16	7	M65×1.5	M8 × 1	M 8	3.5
TL500-2	88 to 420	1 000				9.5														
TL700-1L	49 to 118	1,800				0.5														
TL700-1	116 to 569		30	32	64	12.5	105	$105^{+0.05}_{0}$	178	95	98	24	8	3.2	29	8	M95×1.5	M10×1.25	M10	8.4
TL700-2	223 to 1080					12.5														
Note: 1. The produ	cts in bold are sto	ck items.	The r	est ar	e MT	0.														

2. The hexagon socket head set screw is included.

3. The torque values above are values for continuous slip torque, intended for protecting the equipment from overload.

4. For the selection of bush length, refer to the Selection page.

5. The mass is that of one with the maximum bore diameter.

																		0	<u></u>
	Set torque range	Max.rpm	Rough	Min.	Max.	Bush	Bush outer	Center member						Dime	nsions	5			Mass
Model No.	N·m	(r/min)	bore	bore	bore	length	diameter	bore diameter	D	D _H	L	l	T	T_2	t	S	С	Adjustable bolt	kg
			alameler	ulumele	alameler											mux.			
TL10 - 16	392 to 1274	1 000	20	22	70	12.5	125	125+0.07	254	100	115	22	05		10	24	10	AA10 V 1 5	21
TL10 - 24	588 to 1862	1,000	30	32	/2	19.5	155	155 0	254	100	115	23	0.5		4.0	24	17	MIOAT.5	21
TL14 - 10	882 to 2666		40	42	100	15.5	100	102+0.07	254	1 4 5	1.50	21	12	12	10	20	27	M04 × 1.5	50
TL14 - 15	1960 to 3920	500	40	42	100	23.5	163	103 0	350	145	150	31	13	13	4.0	29	2/	M20×1.5	52
TL20 – 6	2450 to 4900	300	50	50	120	15.5	224	0.07 + 0.07	500	105	175	24	1.5	10	10	21	24	M20 × 1.5	117
TL20 - 12	4606 to 9310]	50	52	130	23.5	220	220 0	508	162	1/5	30	15	18	4.0	31	30	MJJZ × 1.5	

Note : 1. All products are MTO.

2. If the model larger than TL20-12 is required, contact TEM.

3. The torque values above are values for continuous slip torque, intended for protecting the equipment from overload.

4. For the selection of bush length, refer to the Selection page.

S110114 TL350-2-B9.5

5. The mass is that of one with the maximum bore diameter.

TL200-3	350			TL500-7	700			TL10-20)		
Without b	bush	With bus	h	Without b	ush	With bus	h	Without b	ush	With bus	h
Product code	Model No.	Product code	Model No.	Product code	Model No.	Product code	Model No.	Product code	Model No.	Product code	Model No.
S110701	TL200-1L	S110711	TL200-1L-B3.8	S110704	TL500-1L	S110714	TL500-1L-B6.5	S110006	TL10-16	\$110123	TL10-16-B12.5
S110001	TL200-1	S110721	TL200-1L-B6.0	S110004	TL500-1	S110725	TL500-1L-B9.5	S110016	TL10-24	\$110124	TL10-16-B15.5
S110011	TL200-2	S110101	TL200-1-B3.8	S110014	TL500-2	\$110115	TL500-1-B6.5	S110017	TL14-10	\$110125	TL10-16-B19.5
\$110702	TL250-1L	S110102	TL200-1-B6.0	\$110705	TL700-1L	\$110116	TL500-1-B9.5	S110018	TL14-15	\$110126	TL10-24-B12.5
S110002	TL250-1	S110103	TL200-2-B3.8	S110005	TL700-1	\$110117	TL500-2-B6.5	S110019	TL20-6	\$110127	TL10-24-B15.5
S110012	TL250-2	S110104	TL200-2-B6.0	S110015	TL700-2	\$110118	TL500-2-B9.5	S110020	TL20-12	\$110128	TL10-24-B19.5
\$110703	TL350-1L	S110712	TL250-1L-B4.5			\$110715	TL700-1L-B9.5			\$110129	TL14-10-B15.5
S110003	TL350-1	S110722	TL250-1L-B6.5			S110726	TL700-1L-B12.5			\$110130	TL14-10-B19.5
S110013	TL350-2	S110105	TL250-1-B4.5			\$110119	TL700-1-B9.5			\$110131	TL14-10-B23.5
		S110106	TL250-1-B6.5			\$110120	TL700-1-B12.5			\$110132	TL14-15-B15.5
		S110107	TL250-2-B4.5			\$110121	TL700-2-B9.5			\$110133	TL14-15-B19.5
		S110108	TL250-2-B6.5			\$110122	TL700-2-B12.5			\$110134	TL14-15-B23.5
		S110713	TL350-1L-B4.5							\$110135	TL20-6-B15.5
		S110723	TL350-1L-B6.5							\$110136	TL20-6-B19.5
		S110724	TL350-1L-B9.5							\$110137	TL20-6-B23.5
		S110109	TL350-1-B4.5							\$110138	TL20-12-B15.5
		S110110	TL350-1-B6.5							\$110139	TL20-12-B19.5
		S110111	TL350-1-B9.5							\$110140	TL20-12-B23.5
		S110112	TL350-2-B4.5								
		S110113	TL350-2-B6.5								
		C110114									

orque Limiter

Finished bore Torque Limiter with sprockets

- Finished bore Torque Limiter and finished sprockets are available for quick delivery. If sold as a combination, torque is pre-set before shipment.
- With sprocket

Sprocket comes standard with TL200 to TL700.

Bores and keyways are already finished

Bore finishing is standard for Torque Limiter TL200 to 700.

Easy torque setting

Because the adjustable nut or adjustable bolt is set at the predetermined 120°, it is easy for the customer to set torque. The torque setting is determined using a static torque tester.

Sprocket and bore finishing dimension table

Torque	Finishe	ed bore	Sprockets								
Model No.	diamet	er(mm)	Туре	F(mm)	Bush length (mm)	No. of teeth	No. of teeth	(kg)			
TI 200	11 12 14	10	RS35	$4.3 - \overset{0}{0.25}$	3.8	20,21,22,23,24,25,26,27,28,30	_	0.3			
11200	11,12,14,	10	RS40	7 - 0.35	6.0	16,17,18,19,20,21,22,23,24,25,26	_	0.33			
TI 250	12,14,15,16,	17	RS40	7 - 0.35	6.5	22,23,24,25,26,27,28,30	21,32	0.85			
11230	18,19,20,22	17	RS50	7 - 0.25	6.5	18,19,20,21,22,23,24,25,26,27,28	17	0.92			
			RS40	7 - 0.35	6.5	26,27,28,30,32,34,35,36,38	40,42,45	1.55			
TL350	18,19,20,		RS50	7 - 0.25	6.5	22,23,24,25,26,27,28,30,32	21,34,35,36	1.68			
	22,24,25		RS60	10 - 0.30 9.5		_	18,19,20,21,22,23,24,25,26,27,28,30	1.91			
	22,24,25,		RS50	7 - 0.25	6.5	30,32,34,35,36,38,40,42,45	48,50	4.3			
TL500	28,30, 32.35.38.	29,33,36	RS60	10 - 0.30	9.5	25,26,27,28,30,32,34,35,36,38	40	4.7			
	40,42		RS80	13 - 0.30	9.5	_	19,20,21,22,23,24,25,26,27,28,30	5.2			
	35 40 42 45	32 33 36	RS60	10 - 0.30	9.5	35,36,38,40,42,45,48,50,54	_	10.7			
TL700	35,40,42,45, 32,33,36, 0 50,55,60, 38,43,46,		RS80	13 - 0.30	12.5	26,27,28,30,32,34,35,36,38	_	11.2			
	63,64 48,52,56,57		RS100	16.5 - 0.30	12.5	_	21,22,23,24,25,26,27,28,30	12.2			
Delivery	livery *1 *1					*]	*2	-			

*1 = Ex.-Japan 4weeks by sea *2 = Ex.-Japan 6weeks by sea Delivery

¹² = Ex.-Japan bweeks by sea
1. Delivery dates are listed in each column. If ordering the finished bore and with sprocket combination, the longer time of delivery applies.
2. If a finished bore is a size other than that listed in the chart above or hardened teeth are needed, it may be possible to provide this. Contact TEM for a consultation.
3. The thickness of sprocket F is different from the thickness of the standard sprocket. Ex.-Japan 4weeks by sea
4. For Torque Limiter dimensions, refer to pages 89 and 90.
5. The mass of the above is based on rough bore and minimum number of sprocket teeth.
6. On TL200, setting to the shaft by hexagon socket head set screw is not possible. Use a snap ring for the shaft or end plate.

Model No.

Size

<u>TL250 - 2 - 040 22 - 20J - 5.0</u>

No. of disk springs No. of sprocket teeth Sprocket Model No.(RS40) Bore diameter New JIS key normal type

Set torque(Unit: kgf.m, no number if no torque setting)

Chamfer and finish

Bore diameter	Chamfer dimensions
ϕ 25 and less	C0.5
ϕ 50 and less	C1
ϕ 51 and above	C1.5

Torque setting

• Torque setting is done at 120° on the "Tightening Amount - Torque Correlation Graph". When using the Torque Limiter, set the torque based on 120° with the adjusting nuts or bolts.

Bore diameter and keyway specifications • The bore tolerance is H7.

- The keyway is New JIS (JIS B 1301-1996) "normal type"
- · Set screws are included.

Torque Limiter coupling

The Torque Limiter coupling is a flexible coupling that uses a Torque Limiter and special type sprocket, and is connected by 2 rows of roller chains.

Centering the shaft coupling is easy and handling is simple. The Torque limiter acts as an automatic safety device, protecting machinery from damage due to overload.

• Torque Limiter unit of TL200-1LC, TL250-1LC and TL350-1LC have a spacer between the disk spring and lock washer.

a.

															ι	Jnit : mm
	Set torque range	Max rom	Rough bor	e diameter	Min. bore	e diameter	Max. bore	e diameter				Dimer	nsions			Mass
Model No.	N∙m	(r/min) *	Coupling side	Torque Limiter side	Coupling side	Torque Limiter side	Coupling side	Torque Limiter side	Sprocket	D	D _H	L	l 1	l 2	S	kg
TL200-1LC	1.0 to 2.0}															
TL200-1C	2.9 to 9.8	1200	8	7	10	10	31	14	RS 40-16T	76	50	55	24	29	7.5	1.0
TL200-2C	6.9 to 20															
TL250-1LC	2.9 to 6.9															
TL250-1C	6.9 to 27	1000	13	10	15	12	38	22	RS 40-22T	102	56	76	25	48	7.4	1.9
TL250-2C	14 to 54															
TL350-1LC	9.8 to 20															
TL350-1C	20 to 74	800	13	17	15	18	45	25	RS 50-24T	137	72	103	37	62	9.7	4.2
TL350-2C	34 to 149															
TL500-1LC	20 to 49															
TL500-1C	47 to 210	500	18	20	20	22	65	42	RS 60-28T	188	105	120	40	76	11.6	10
TL500-2C	88 to 420															
TL700-1LC	49 to 118															
TL700-1C	116 to 569	400	23	30	25	32	90	64	RS 80-28T	251	150	168	66	98	15.3	26
TL700-2C	223 to 1088															
TL10-16C	392 to 1274	200	22	30	35	32	05	72	DS1 40 22T	255	127	100	71	115	24.2	66
TL10-24C	588 to 1860	300	- 33	50	55	52	75	12	K3140-221	355	137	107	/1	115	20.2	00
TL14-10C	882 to 2666	200	20	40	40	12	110	100	DS140 24T	470	147	225	00	1.50	20.1	140
TL14-15C	1960 to 3920	200	30	40	40	42		100	K3100-201	4/0	10/	200	60	150	30.1	140
TL20-6C	2450 to 4900	140	12	50	15	52	150	130	DS140 24T	421	227	200	120	175	20.1	205
TL20-12C	4606 to 9310	140	43	- 30	45	52	130	130	K3100-301	031	23/	300	120	175	30.1	263

1. The products in bold are all stock items. The rest are MTO.

2. Using a sprocket with induction-hardened teeth, TL200 to 700 can be used at up to 1800 r/min. The larger ones can be used at up to 800 r/min.

If the model larger than TL20-12C is required, contact TEM.
 The mass is that of one with the maximum bore diameter.

Torque Limiter coupling with finished bore

Finished bore products are available for quick delivery.

Bores and keyways are already finished

Bore finishing is standard for Torque Limiter couplings TL200C to 700C.

Finished Bore Dimension Chart

Unit : mm Finished bore dimensions Torque Limiter Coupling Model No. Torque Limiter side Coupling side TL200-1LC TI 200-1C 10,11,12,14 10,11,12,14,15,16,17,18,19,20,22,24,25,28,29,30 TL200-2C TL250-1LC 15,16,17,18,19,20,22,24,25,28,29,30,32,33,35, TL250-1C 12,14,15,16,17,18,19,20,22 36,38 TL250-2C TL350-1LC 15,16,17,18,19,20,22,24,25,28,29,30,32,33,35, TL350-1C 18,19,20,22,24,25 36,38,40,42,43,45 TL350-2C TL500-1LC 20,22,24,25,28,29,30,32,33,35,36,38,40,42,43, TL500-1C 22,24,25,28,29,30,32,33,35,36,38,40,42 45,46,48,50,52,55,56,57,60,63,64,65 TL500-2C TL700-1LC 32,33,35,36,38,40,42,43,45,46,48,50,52,55,56, 25,28,29,30,32,33,35,36,38,40,42,43,45,46,48, TL700-1C 57,60,63,64 50,52,55,56,57,60,63,64,65,70,71,75,80,85,90 TL700-2C Delivery Ex.-Japan 4 weeks by sea

1.For finished bore and hardened teeth specifications outside those written in the above chart, please conact TEM for more information.

Model No.

TL250 - 2C - T18J×C30J - 5.0 Size No. of disk springs Torque Limiter side bore diameter

Keyway type: (J: new JIS normal type) Coupling side bore diameter Keyway type: (J: new JIS normal type) Set torque (unit: kgf \cdot m, no number is displayed when torque is not set)-

Chamfer and finish

Bore diameter	Chamfer dimensions
ϕ 25 and less	C0.5
ϕ 50 and less	C1
ϕ 51 and above	C1.5

specifications · Bore diameter tolerance is H7.

Bore diameter and keyway

- · The keyway is New JIS (JIS B 1301-1996) "Normal type"
- · Setscrews are included.

anbu

Selection

If using the Torque Limiter with human transportation or lifting devices, take the necessary precautions with equipment to avoid serious injury or death from falling objects.

T From the machine's strength and load, as well as other information, set the trip torque at the point where it should not go any higher. This torque is the Torque Limiter slip torque.

When the limit value is not clear, calculate the rated torque by using the rpm of the shaft where the Torque Limiter is installed and rated output power of the motor. Then, multiply by 1.5 to 2.0. This is the Torque Limiter slip torque.

Slip torque should be lower than rated torque.

GUsing the dimension table, verify that the maximum allowable bore diameter of the Torque Limiter is larger than the installation shaft diameter. If the installation shaft diameter is bigger, use a Torque Limiter one size larger.

Depending on the thickness of the center member which is clamped, use an appropriate length of bushing. Select a bush by referring to the bush length in the dimension table. Use a single bush or a combination of bushes, whichever is longest without exceeding the thickness of the center member.

Torque setting

Torque Limiter slip torque is set by tightening the adjusting nuts or bolts.

1 After installing the Torque Limiter to the equipment, tighten the adjusting nuts or bolts gradually from a loose position to find the optimal position.

In addition, by using the "Tightening Amount - Torque Correlation Charts" below, the tightening amount of the adjusting nut and bolts for slip torque can be found. However, due to the condition of the friction surface and other factors, the torque for the fixed tightening amount changes.

Using the graph as a rough guide, try test operating the Torque Limiter with the tightening amount slightly loose, then tighten gradually to find the optimal position. This is the most practical method.

When slip torque stability is especially important, hand tighten the adjusting nut or bolts as much as possible, and then slip approximately 500 times for running-in at a wrench-tightened 60° more. If the rotation speed is fast, slip several times and subject it to 500 slips.

2With the center member, the torque can be set to the specified amount. In this case, it is necessary to use a finished bore.

Center member selection and manufacture

Sprockets and gears can be used as a center member with the Torque Limiter. If the customer intends to select or manufacture the center members by themselves, take the following precautionary steps:

For the Torque Limiter's outer diameter, the minimum diameter of the center member is restricted. When using a sprocket with a chain drive, refer to page 96 for minimum number of teeth. Finish the friction face sides of the center member (both

2Finish the friction face sides of the center member (both sides) in 3s - 6s.

BFor the bore diameter of the center member, machine it within the center member bore diameter tolerance from the dimension table in 3s - 6s.

The width in which the center member is clamped should be within the S dimension in the dimension table.

Torque Limiter's operation detection

When overload occurs, the Torque Limiter slips and protects the machine, but if the driving source is not stopped, the Torque Limiter will continue to slip. If it continues to slip, the friction facing will be abnormally worn and become unusually hot, making it necessary to stop the drive source immediately.

The following are examples that detect Torque Limiter slips and stop the drive by using a proximity switch and digital tachometer.

Installation examples

Slip can be detected within approximately 1 to 10 seconds based on the rotational detection speed if the number of special cams selected is shown in the chart.

Number of Special cams	Rotational detection speed range r/min	Number of Special cams	Rotational detection speed range
1	6 to 60	6	1.0 to 10
2	3 to 30	7	0.85 to 8.5
3	2 to 20	8	0.75 to 7.5
4	1.5 to 15	9	0.67 to 6.7
5	1.2 to 12	10	0.6 to 6.0

Number of special cams and rotational detection speed

Note: In the case of 0.6 r/min and slower, the range is that of 6 to 60r/min divided by the number of special cams.

Special cam dimensions and installation

The special cam is fixed by a screw on the driven side. Use a screw lock to lock the screw.

Special cam for reference

When the Torque Limiter is used with a coupling Type 4 type, and the main unit side stops when overload occurs

For the installation of Type 4, it is quite difficult to install the special cams, so as much as possible avoid using this type. When using the Torque Limiter with the coupling type, use Туре 3.

- PB1 : Motor start button
- PB2 : Motor stop button
- RST : BZ, L reset button
- MC : Electromagnetic contactor for motor R
- : Auxiliary relay
- NO : Digital tachometer output a contact
- : Buzzer
- BZ
- L : Lamp

Digital tachometer: OMRON H7CX-R11-N

Proximity switch: OMRON TL-N5ME2

Note)

We recommend OMRON digital tachometers and proximity switches for the above. For more information, refer to the OMRON catalog.

Sprockets for the center member

When using the sprocket as a center member, refer to the notes below. In the below chart, the sprocket is used as a center member for the chain drive.

(1)Minimum number of teeth in which the chain does not interfere with the special cam (same as the reference drawing of the previous page) when using installation types 1 and 2 of the previous page.

(2)Minimum number of teeth in which the chain does not interfere with the friction facings of the Torque Limiter. (3)Bush length

(4)Sprocket bore diameter (center member bore diameter)

Torque Limiter only and in the case the special cams shown in the previous page are used in type 2.

	Sprocket bore								Min. 1	No. of s	procke	t teeth							
Torque Limiter	diameter	RS	35	R	S40	RS	50	RS	60	RS	80	RS1	00	RS	20	RS1	40	RS1	60
Model No.	(center member bore diameter)	Min.No. of teeth	Bush length																
TL200	30 ⁺ ^{0.03}	△ 20	3.8	16	6														
TL250	41 ^{+ 0.05}			20	6.5	17	6.5												
TL350	49 ⁺ 0.05 0			26	6.5	21	6.5	18	9.5	15	9.5								
TL500	74 ^{+ 0.05}					△ 29 (30)	6.5	25	9.5	19	9.5								
TL700	105 ^{+ 0.05} 0							△ 33 (35)	9.5	26	12.5	21	12.5	18	12.5				
TL10	135 ^{+ 0.07}											△ 29 (30)	12.5	24	15.5	△ 22	19.5		
TL14	183 + 0.07											△ 39 (40)	15.5	△ 33 (35)	15.5	△ 29	19.5	△ 26	23.5
TL20	226 ^{+ 0.07}											△ 54	15.5	△ 46 (60)	15.5	△ 40	19.5	△ 35	23.5

Note: Those marked with " riangle" are not standard A type sprockets. When using a standard stock sprocket, use the number of teeth in ().

In the case the special cams shown in the previous page are used in type 1.

	Sprocket bore								Min. N	No. of s	procke	t teeth							
Torque Limiter	diameter	RS	35	R	S40	RS	50	RS	60	RS	80	RS	00	RS	20	RS1	40	RS1	60
Model No.	(center member bore diameter)	Min.No. of teeth	Bush length																
TL200	30 ⁺ 0.03 0	△ 25	3.8	19	6.0														
TL250	41 ^{+ 0.05} ₀			24	6.5	20	6.5												
TL350	49 ⁺ 0.05 ₀			30	6.5	24	6.5	21	9.5	17	9.5								
TL500	74 ^{+ 0.05}					32	6.5	△ 28 (30)	9.5	21	9.5								
TL700	105 ^{+ 0.05}							36	9.5	△ 28 (30)	9.5	△ 23 (24)	12.5	20	12.5				
TL10	135 ^{+ 0.07}											△ 31 (32)	12.5	26	15.5	△ 23	19.5		
TL14	183 ^{+ 0.07} 0											△ 41 (45)	15.5	35	15.5	△ 30	19.5	△ 27	23.5
TL20	226 ^{+ 0.07}											△ 56 (60)	15.5	△ 47 (60)	15.5	△ 41	19.5	△ 36	23.5

Note: Those marked with " riangle " are not standard A type sprockets. When using a standard stock sprocket, use the number of teeth in ().

Axial Guard

Features

The Axial Guard is a new type of mechanical type overload protection device for mechanisms where the load acts linearly, such as pushers or cranks.

Highly accurate trip load

Even with repeated loads, the fluctuating trip load variation is always within $\pm 15\%$.

Non-backlash

High rigidity means no backlash for overweight axial loads.

Easy load adjustment

By simply turning the adjustable screw, load can be adjusted. In the tensile or compression direction, the Axial Guard trips at almost the same load.

Release type

When overload occurs, the Axial Guard immediately trips and the connection between the drive side and load side is shut off. The drive side's thrust does not transmit.

The resetting requires a small load, making it easy to reset.

Easy installation

The end faces of the case and slide shaft have tap holes for easy built-in design.

Standard stock

All Axial Guards are in stock.

Construction

Operating principles

Because the drive ball is held in the groove, thrust from the case (or slide shaft) is transmitted to the load side.

When the load exceeds the pre-set value, the drive ball pops out of the groove; the connection between the slide shaft and the case disengages, and moves in a free state.

Axial Guard

Applications

The combination of the crank and Cam Clutch motion sends the wire rod. When a foreign object gets caught up in the machine or the wire rod is deformed, overload occurs and the Axial Guard trips, thus protecting the feed portion.

(drive side)

Axial Guard

When a tool is being changed, the gripper portion is driven in the axial direction by the cam mechanism. When a tool gets caught up or the gripper hits the obstacle, the Axial Guard trips, thus protecting the cam and gripper from damage.

FGA Serie G

ia

Transmissible capacity/dimensions

																							-
TGA65	147 to 637	33	23	14	10	7	22.5	5	2	40	5	5	42	11	58	16	5	7.5	M 6	7	M3	6	0.2
TGA150	588 to 1470	38	28	18	14	10	24	6	2	43	7	8	45	19	72	21	7	8	M 8	10	M4	8	0.4
TGA250	735 to 2450	45	34	24	18	14	28	7.5	3	50	10	15	53	22	90	24	8	9	M12	14	M5	10	0.7
TGA350	980 to 3430	56	44	28	22	16	34	9	3	63	10	20	66	24	110	30	10	12	M14	15	M6	10	1.2

Load Curve (Tightening Amount-Load Correlation Diagram)

Guide to calculating load

In order for the Axial Guard to be most effective as a safety protection device, install it on the driven side in the area where overload is most likely to occur.

Determining trip load

From the machine's strength and load, as well as other information, set the trip load at the point where it should not go any higher. When the limit value is not clear, it is decided by the load calculation (refer to the example below). As the low load on the equipment gradually increases, determine the appropriate set load.

Caution

1 For most situations, avoid using the Axial Guard with human transportation or lifting devices. If you decide to use an Axial Guard with these devices, take the necessary precautions on the equipment side to avoid serious injury or death from falling objects.

2 For the Axial Guard, the case and slide shaft can rotate independently based on each shaft center. In the case that the prevention of independent rotation during operation is required, refer to page 73.

3 When resetting, the slide shaft or case rapidly/suddenly moves in the shaft direction, causing mechanical shock. Therefore, do not reset the Axial Guard by hand or touch it directly.

Never reset manually !

How to set the trip load

1 All Axial Guards are shipped with the load set at the minimum point (min. load). Confirm that the number of rotations indicator and angle indicator are set at "0". (Refer to the diagram on the right)

- 2 Loosen the hexagon socket head set screw to prevent loosing of adjustable screw.
- 3 From the information in the "Tightening Amount Load Correlation Diagram" on page 100, find the tightening angle of an equivalent adjustable screw for the predetermined trip load. Tighten to 60° less than the predetermined angle.
- 4 Next, carry out a load trip test. Gradually tighten to optimal trip load and set.
- 5 When the load has been set, tighten the hexagon socket head set screw to prevent loosing of adjustable screw portion, and verify that the adjustable screw is locked. (Refer to the diagram on the right)

The No. of rotations indicator displays how many times the adjustable screw has rotated from the minimum load. If the end face of case is between 0 and 1, it indicates less than 1 rotation (less than 360°). As well, the angle indicator indicates how many degrees the adjustable screw has turned. The degree amount is indicated by the center line of the No. of rotations indicator. The total of the adjustable screw's number of rotations (1 rotation=360°) and angle indicator is the rotation angle of the adjustable screw. (Example)

If the No. of rotations indicator is between 0 and 1, and the angle indicator shows 180°, the adjustable screw is turned to 180° position from minimum torque.

When turning the adjustable screw, to prevent the Axial Guard from turning together with the adjustable screw, insert the bar into the drilled hole at the outer diameter of the cover.

Reset

- 1 Before resetting, stop the machine and remove the cause of overload.
- 2 It is reset automatically when restarting the drive side (motor) to reverse load direction of trip direction. Turn the input (motor) using low rpm or inching. The axial load that is necessary for resetting is listed in the chart on the right.
- 3 When the Axial Guard resets, it makes a distinct "click" sound. To check whether the Axial Guard has reset, refer to dimension A in the diagram on the right.

Caution

When resetting, the slide shaft or cover rapidly moves in the axial direction, causing mechanical shock. Therefore, do not reset by hand or directly touch the Axial Guard.

Model No.	* Axial direction load for reset	Dimension A when resetting
TGA 65	83 N{8.5 kgf}	11
TGA150	196 N{20 kgf}	19
TGA250	343 N{35 kgf}	22
TGA350	490 N{50 kgf}	24

* At Max. load

Auxiliary parts

By incorporating the auxiliary parts in the below diagram, it is easier to use the Axial Guard.

Axial Guard allowable stroke (Axial Guard unit only)

If the Axial Guard exceeds the stroke limits from the table below, the slide shaft will come out. In this case, the ball will fall out and the Axial Guard's functions will be lost. If after tripping the stroke is more than what is listed in the below table, connect the connecting and guide shafts.

Model No.	TGA65	TGA150	TGA250	TGA350
A direction allowable stroke	14	20	30	38
B direction allowable stroke	14	22	24	26

The mechanical stop limits stroke after trip
 In the case of stopping the stroke at a certain
 position by sensor detection when tripping, it will
 become necessary to use a backup mechanism for
 stopping.
 Install a spring or other such buffer material to

Install a spring or other such buffer material to absorb the stroke.

- 2. When installing at shaft-mounted reducer tie rod This is an example of the application being used for shaft-mounted reducer torque arm as an overload protection device. Load direction is rotational direction, and the reducer rotates when tripping. Because of the reducer rotation, after the sensor detects overload and stops the motor, it stops mechanically at a certain position.
 - * For possible applications and model numbers, contact TEM.

Recommended manufacturing dimensions for auxiliary devices

When installing a connecting shaft, guide shaft, guide sleeve or bolt to an Axial Guard, apply an adhesive for metal to the threaded portion to prevent loosening. (Loctite, etc.) (TEM recommends Loctite 262.)

1. Guide shaft, connecting shaft

Use the tap hole at the end face of the slide shaft to connect the guide and connecting shafts. The recommended dimensions of the connecting portion are in the diagram below.

Model No.	B (0 - 0.2)	C (0 (-0.2)	D	E	F (h7)	G (h9)	H screw size	l * screw size
TGA65	10	6	4		7	10	M6×P1.0	M6×P1.0
TGA150	15	9	6	Select by installation	10	14	M8×P1.25	M8×P1.25
TGA250	22	13	9	length,	14	18	M12×P1.75	M12×P1.75
TGA350	23	14	9	siloke, elc.	16	22	M14×P2.0	M14×P2.0

* Not necessary for guide shaft

Installation

1. Installing to the machine

- (1) Before installing the Axial Guard to the machine, completely wipe off any dust or dirt from the slide shaft, the spigot facing of the case and taps.
- (2) Next, connect the slide shaft and the case tap portion. TEM recommends an adhesive for metals be applied to the tap portion or the bolt outer diameter to prevent any loosening. (Loctite 262 recommended)
- (3) Make sure not to fix both the Axial Guard slide shaft side and the case side when installing the Axial Guard. The Axial Guard has no coupling function, so if it is installed too rigidly it will not properly function, potentially causing a malfunction or machine damage.
- (4) When the guide sleeve and guide shaft are connected to the Axial Guard there is a possibility that the inner diameter of the guide sleeve and the outer diameter of the guide shaft end face may interfere. Just in case, apply grease to the portion on the diagram below. (Refer to the maintenance section on page 106 for information about grease brands.)

2. Guide sleeve

Use the tap holes at the end face of the case to connect the case and guide sleeve. The recommended dimensions of the connecting portion are in the diagram below.

Model No.	J (+ 0.2 0	К	L	м	Ν	P (H7)	$ \begin{pmatrix} J \\ + 0.2 \\ 0 \end{pmatrix} $	C (0 - 0.2	Axial Guard
TGA65	2.5		6	3.4	23	14	10.5	16	
TGA150	2.5	Select by installation	6	4.5	28	18	14.5	20	
TGA250	3.5	length,	6	5.5	34	24	18.5	24.5	
TGA350	3.5	siloke, elc.	6	6.6	44	28	22.5	31	

- * When the Axial Guard is installed vertically, (lengthwise direction) grease may leak through the gap between the slide shaft and case or the adjustable screw. To avoid any problems, make sure to replenish grease at frequent intervals. (Refer to page 106 for maintenance information)
- * Do not use the Axial Guard if there is a possibility that a falling accident of the drive or load side may occur when tripping. Such an accident may lead to serious injury or machine damage.

2. Overload detection

When using the Axial Guard, make sure to combine it with the sensor mechanism to ensure that overload can be properly detected. (Refer to page 105 for overload detection information)

Installation example

Overload detection

When using the Axial Guard make sure to use the TGA Sensor to detect trip during overload.

This tap hole is plugged by plug bolt before shipment. Remove the plug when installing the sensor.

Fix the TGA Sensor to the case by screwing it into the tap holes. After fixing the sensor to the case, screw on lock nut A last to make it lock in place (double nut).

(The positioning nut is glued with an adhesive, so do not forcibly rotate it.)

TGA Sensor Specifications

		AC type	DC type					
1	Model No.	TGA – S8	TGA – S8D					
Power	Rating	AC24 to 240V	DC12 to 24V					
voltage	Possible use range	AC20 to 264V(50/60Hz)	DC10 to 30V					
Curre	nt consumption	Less than 1.7mA(at AC200V)	Less than 13mA					
Control or	utput (open, close capacity)	5 to 100mA	Max. 200mA					
Inc	dicator lamp	Operation indicator						
Ambient	operating temperature	- 5 to + 70℃ (no condensation)					
Ambier	nt operating humidity	35 to 95% RH						
C	Dutput form	NC (Output open/close condition when not detecting sensor plate)						
Ор	eration form	— NPN						
Insula	ation resistance	More than 50MΩ (at DC500V	/ mega) Charge portion - Case					
	Mass	Approx. 45g	(with 2m cord)					
Res	idual voltage	Refer to characteristic data	Less than 2.0V (Load current 200mA, 2m cord length)					

Measurement Diagram

When using the TGA Sensor it is necessary to stop the slide shaft side and case side rotation. As in the diagram below, stop rotation by putting the slide key (JIS1303 - 1916) between the guide sleeve and the guide shaft. For other methods, contact TEM for more information.

Like the diagram on the left, fix the slide key to the shaft with a slotted head countersunk screw (JISB1101). Screw sizes are listed below.

Model No.	Screw size
TGA65	M2
TGA150	M2
TGA250	M2
TGA350	M3

TGA Sensor handling

Refrain from striking, swinging or putting excessive force on the detecting portion.

AC type TGA-S8

Not necessary to consider TGA Sensor's polarity (brown, blue)

Precautions for wiring

• Make sure to connect the load at first, then turn on the power. If the power is turned on without connecting the load, it will be damaged.

• In order to prevent malfunction or damage due to surge or noise, insert the TGA sensor code in a individual piping when it runs close to the power cable.

DC type TGA-S8D

About choosing load and wiring

Connecting to the power source

Make sure to connect to the power source through load. A direct connection will break the elements inside.

Metal piping

In order to prevent malfunction or damage, insert the proximity switch code inside a metal pipe when it runs close to the power cable.

Surge protection

In the case where the TGA Sensor is near a device that generates a large surge (motor, welding machine, etc.), the TG Sensor contains a surge absorption circuit, but also insert a varistor to the source.

The effect of current consumption (leakage)

Even when the TGA Sensor is OFF a small amount of current continues to flow to keep the circuit running. (Refer to the "Current Consumption (leakage) Graph".) Because of this, a small voltage occurs in the load that can sometimes lead to reset malfunction. Therefore, confirm that the

voltage of the load is less than the reset voltage before use. As well, if using the relay as load, depending on the construction of the relay, a resonance may occur due to the current leaks when the sensor is OFF.

Load Residual Voltage Characteristics

AC 24V and a constraint of the second secon

Maintenance

The Axial Guard is packed in grease for shipment. Add the grease shown in the right table once a year or every 100 trips.

Kyodo Oil	Sumitomo Lubricant	Dow Corning Toray	SΠ
Grease HD	Low temp grease	Molykote 44MA Grease	Solvest 832

• When power voltage is low

When power source voltage is lower than AC48V and load current is less than 10mA, the output residual voltage when the TGA Sensor is ON becomes large. When it is OFF, the residual voltage of load becomes large. (Refer to "Residual Voltage Characteristics of Load".) Take caution when using the load such as a relay operated by voltage.

When load current is small

When load current is smaller than 5mA, residual voltage of load becomes large in the TGA Sensor. (Refer to "Residual Voltage Characteristics of Load".) In this case, connect the breeder resistance with load parallel, apply load current at more than 5mA, and set the residual voltage less than return voltage of load. Calculate the breeder resistance and allowable power using the following calculations. TEM recommends to use $20k\Omega$ at AC100V and more than 1.5W (3W), and $39k\Omega$ at AC200V and more than 3W (5W) for safe. (If heat generation becomes a problem, use the Wattage shown in ().

Load with large inrush current

As for the load with large inrush current (1.8A and above) such as a lamp or motor, the opening and closing element can be deteriorated or be broken. In this case, use along with a relay.

Axial Guard	
MEMO	

Safety Devices

Electronic

Shock Relay

	Features	p109
	Applications	p110
	Series reference chart	p111
	Notes when selecting: Outline of Special Models and Additional Specifications	p112
	Shock Relay SC Series	p113 to p123
	Shock Relay ED Series	p124 to p126
	Shock Relay 150 Series	p127 to p130
	Shock Relay SS Series	p131 to p133
	Shock Relay SA Series	p134 to p136
	Shock Relay SU Series	p137 to p138
13333	Shock Belay 50 Series	p139 to p140

Shock Relay

Swiftly detects equipment overload!

The Shock Relay is a current monitoring device that quickly detects motor overload, thus protecting your equipment from costly damage.

Features

1. Instantly detects overcurrent

When the motor current exceeds the predetermined current value, the relay contact signal can be output after a preset time.

For example, when a foreign object gets caught up in the conveyor, the Shock Relay sends a signal causing an emergency stop, thus minimizing equipment damage.

It's not a thermal relay

The purpose of the thermal relay is to protect the motor from burnout. When the motor current continually exceeds the rated value for a certain period of time, an abnormal signal is sent to protect the motor from burnout. Generally, it takes a long time for operation to begin, so it is not suitable for equipment/machine protection.

Easy to install on existing equipment

The Shock Relay is an electrical protection device.

In the case that the Shock Relay is added to existing equipment, it is not necessary to make major modifications to the device as in the case of the mechanical type.

Because the Shock Relay is installed inside the control panel, it can function outdoors or in harsh environments.

3. The abnormal signal is only output under abnormal conditions

The Shock Relay sends an abnormal signal when overcurrent continues to exceed the preset period of time.

Sometimes during normal operation conveyors will experience insignificant short time current overloads due to reasons such as the current pulsation of the equipment, or when packages are put on the conveyor.

By using the shock time function these small overloads will not be recognized as overloads, therefore avoiding nuisance stoppages.

ล่อ่าน่าน่าน่าน่าน่าน่าน่าน่าน

	Operation time	Protected object
Shock Relay	Short	Equipment
Thermal Relay	[*] Long	Motor

*If the motor current slightly exceeds the preset value the thermal relay will not work. Even if it does work, it will do so slowly.

	Existing equipment	Environment
Electrical	Easy to install later	Built inside the panel
Mechanical	Difficult to install later	Necessary environmental precautions

SAFCON

Applications

SC Series

Mixer

- 1. When mixing has just started and the load is heavy, the mixer operates at a low speed.
- 2. When the load becomes lighter after some time of mixing, an output signal of 4 to 20mA is sent to a sequencer to switch the mixing to a higher speed.

Key Points

Output of 4 to $20\mathrm{mA}$ which enables actions according to the actual load.

ED Series

Lifting device for illumination and screens

Operation

- 1. Due to over-installation of the lighting system, when the total weight of the baton exceeds the permissible load, the lifting device will be automatically shut down.
- 2. When the lifting device becomes overloaded during operation it automatically shuts down.

Key Points

During operation the motor current is displayed digitally, and allowable load and stopping due to overload can be set as a digital numeric value.

SS Series

Operation

Protects the conveyor from damage when a tool gets caught in its belt.

Key Points

The driver has been made more compact and less expensive.

*A built-in Shock Relay in the motor terminal box type is available.

- Ideal for the hollow type reducer (for applications where it is difficult to install a mechanical safety device)
- · Easy to change settings
- Even with large torque the SS Series retains its compact size

SU Series

Pump

Operation

Prevent the pump motor from burnout due to water shortage.

Key Points

Compact body, economical, and test function

Series reference chart

	Series name	SC Series	ED Series	150 Series	SS Series	SA Series	SU Series	50 Series	
	Model No.	TSBSCB/S06 to TSBSCB/S60	TSB020ED-1, -2 to TSB550ED-1, -2	TSB151, 152	TSBSS05 to 300	TSBSS05 to 300 TSBSA05 to 300		TSB50	
	Features	Digital display, communication function selectable self- holding/automatic reset type	Digital display, economical, selectable self- holding/automatic reset type	Analog display, self-holding type	Economical, self-holding type	Economical, automatic reset type	Economical, self-holding type under-load detection Type	Economical, automatic reset type	
Motor	(kW) 132 90 75 22 Combined 11 with 3.7 CT 0.1			200/220 400/440				200/220 400/440	
	rower source (v)	200/220 400/440	200/220 400/440	200/220 400/440	200/220 400/440	400/440	200/220 400/440	200/220 400/440	
C	Operation setting level	Ampere	Ampere	The ratio of motor-rated	Ampere	Ampere	Ampere	The ratio of motor-rated	
		(A)	(A)	current value (%)	(A)	(A)	(A)	current value (%)	
S	tart time setting range	0.2 to 12.0s adjustable	0.2 to 10.0s adjustable	0.2 to 20s adjustable	0.2 to 30s adjustable	0.2 to 10s adjustable	No	3s (fixed)	
S	nock time setting range	0.2 to 5.0s adjustable	0.2 to 5.0s adjustable	0.2 to 3s adjustable	0.2 to 10s adjustable	0.2 to 5s adjustable	0.2 to 30s	0.3 to 3s adjustable	
0	Operation power source AC100 to 240V		100 to 120V or AC100/110V or 200 to 240V AC200/220V 50/60Hz		AC100 to 240V AC100 to 240V		AC200 to 240V	AC100/110V or AC200/220V 50/60Hz	
Cor	dition of output relay after activation	Selectable; self-holding or automatic reset	Selectable; self-holding or automatic reset	Self-holding	Self-holding	Automatic reset	Self-holding	Automatic reset	
	Test function	0	0	0	0	0	0	×	
	Operation display	LED digital display	LED digital display	LED light	LED light	LED light	LED light	×	
*2	Open phase, reverse phase, phase unbalance detection	0	×	×	×	×	×	×	
	Alarm output	0	×	\bigtriangleup	×	×	×	×	
	DIN rail installed	0	0	×	0	0	0	×	
	Display meter	Digital meter current value display	Digital meter current value display	Analog meter % display	×	×	×	×	
С	CT (current transformer) Built-in (for large capcity motors, external CT is used together.) Built-in (transformer)		Built-in (for large capcity motors, external CT is used together.)	Built-in (for large capcity motors, external CT is used together.)	Built-in	External CT separate			
*4	Impact load detection	×	×		×	×	×	×	
cial mod	1A input	×	×		×	×	×	×	
Spec	Lower and upper limit detection	0	×		×	×	×	×	
	Conforms to UL/cUL standards	×	0	×		×	×	×	
	CE marking	0	0	×	0	×	×	×	
*4 S	Conforms to CCC standards	×	0	×			×	×	
ation	Subtropical specifications	×	×		×	×	×		
cific	Support for abnormal voltage of control power supply	*3 ×	*3 ×		*3 ×	*3 ×	*3 ×	Δ	
l spe	Panel installation	*5 🔿	×		×	×	×	×	
iona	Start time modification	×	×		×	×	×	Δ	
Addit	Shock time modification	×	×		×	×	×		
4	Automatic reset	0	0		×	0	×	0	

\bigcirc Standard specs \triangle Special MTO × Not available

Notes: *1. This is the added voltage fluctuation range of use in regard to nominal voltage.

*2. Open phase the motor lacks 1 phase.

Phase reversal the phase of the power supply to the motor becomes inverted.

Phase unbalance the phase current becomes unbalanced. The maximum value of the phase current is detected when it is greater than or equal to 2 x the minimum value.

*3. Even the voltage for operation is not standard, it is possible to use the standard units if the voltage fluctuation is taken into consideration and the voltage is within the above range.

*4. For more information, refer to page 112.

*5. Panel mounting type must be selected.

Notes when selecting

1. When used with human transportation equipment or lifting devices, install a suitable protection device on that equipment/ device for safety purposes. Otherwise an accident resulting in death, serious injury or damage to equipment may occur.

2. CT (current transformer)

The CT is essential for current detection (150 Series, 50 Series only). For more information about the appropriate CT, refer to the page of each series.

3. Model Selection for Special Capacity and/or Motor Voltage.

Normally a Shock Relay can be selected by motor capacity, but when the motor capacity and/or motor voltage is special (a standard Shock Relay can be used up to a maximum of 600V), select a Shock Relay based on the rated motor current value (set current range).

4. Operation Power Source

The operation power source described in the chart is the standard. For operation power voltages other than the standard, the SS, SA and SC Series have flexible power supplies. The 150 Series with a special operation power source is available as a special MTO product.

5. Output Relay Operation

The output relay operation consists of two modes: The activation type and the reverting type when overcurrent is detected.

In the event of a power outage, make sure to switch off the machine as the sudden activation of the output relay may cause an accident or equipment damage.

1) Activation type when overcurrent is detected

The output relay is activated (contact inverts) only when overcurrent is detected.

Corresponding Models ED Series, SA Series, 150 Series, 50 Series

2) Reverting type when overcurrent is detected

When the power source for the Shock Relay is ON, the output relay is activated (contact inverts). When overcurrent is detected, the output relay reverts to its original state.

Corresponding Model SS Series

3) Activation type/ Reverting type

It is possible to switch between these two modes.

6. Self-holding and Automatic Reset

The methods used for output relay resetting are the self-holding and automatic reset types.

1) Self-holding type

Even after overcurrent has stopped, the selfholding mode continues to function. In order to return it to normal operation, push the RESET button or cut the operation power supply.

Corresponding Models SS Series, 150 Series

2) Automatic Reset Type

The output relay automatically resets after overcurrent is gone.

Corresponding Models SA Series, 50 Series

3) Self-holding Type/ Automatic Reset Type It is possible to switch between the above two modes.

Corresponding Models ED Series, SC Series

7. Inverter Drive Applicability

- 1) Detection accuracy decreases but generally if it is within the 30 - 60Hz range, it should be insignificant.
- 2)Even within the 30 60Hz range, when the inverter accelerates and decelerates, and the current increases or decreases, the Shock Relay can sometimes cause an unnecessary trip. Slowly accelerate and decelerate or set it so that there is some leeway in load current within the allowable range.
- 3) Connect the CT to the secondary side of the inverter, but make sure to connect the Shock Relay operation power source to a commercial power source (never connect it to the secondary side of the inverter).

8. Note

When the inertia of the equipment/ machine is large or the speed reduction ratio from the motor is large, the Shock Relay may sometimes not work.

Conduct a trial test first before putting it into regular use.

🕂 Refer to the manual for further details.

Outline of Special Models and Additional Specifications (Special models are available based on the 150 or 50 Series.)

Special models	Outline of specifications	Special unit model
Impact load detection	Separately from the usual overload, abnormally large current is instantly detected and outputted. Impact load settings can be set from 30%-300%. Impact load shock time is within 0.05s. Other functions and outline dimensions conform to product standards.	TSB151M TSB152M
1A input	When the secondary side of CT is 1A, it can input directly to the Shock Relay. (It's not necessary to consider motor capacity.) Other specifications and outline dimensions conform to product standards.	TSB152C
Upper-lower limit detection	Detects both overload and under-loads; however, because there is 1 output relay, it cannot distinguish between upper and lower limits.	TSB151W TSB152W
Additional specifications	Outline of specifications	Order symbol
Subtropical specifications	Can be used when ambient humidity is 90% RH and below. Other specifications conform to standard products.	S
Support for abnormal voltage of control power supply	Power source voltage: AC230V, AC240V, AC115V, AC120V (please contact us for more information on other voltages)	V
Panel installation	It can be mounted on the control panel surface and operated.	Р
Start time modification	The integral multiple can be extended for a maximum of 60 seconds. The front panel scale becomes an integral multiple (x2, x3 …). Other specifications conform to standard products.	TI
Shock time modification	The integral multiple can be extended for a maximum of 60 seconds. The front panel scale becomes an integral multiple (x2, x3 …). Other specifications conform to standard products.	T2
Automatic reset	For the 150 Series only, the self-holding output relay can be changed to automatic reset.	Н

Features

It is possible to detect current during inverter driving at frequencies of 20 to 200 Hz with high accuracy. * To prevent unnecessary operation of the shock relay due to the increase in current during acceleration/deceleration, accelerate or decelerate slowly or allow a margin in the preset current

Standard specifications

TSBSCS06 + TSBSCD + TSBSCC05 to 30 TSBSCS34 + TSBSCD + TSBSCC05 to 30 TSBSCS60 + TSBSCD + TSBSCC05 to 30

Model No All-in-one type			TSBSCB06	TSBSCB34	TSBSCB60			
	viodel INO.	Panel type		TSBSCS06	TSBSCS34	TSBSCS60		
			4t	0.1kW	-	_		
	200V class		2t	0.2, 0.4kW	1.5, 2.2kW	-		
ţ		Number of wires pass	1t	0.75kW	3.7, 5.5kW	7.5, 11kW		
\$		through the CT hole	4t	0.2kW				
-	400V class	0	2t	0.4, 0.75kW	2.2, 3.7, 5.5kW	_		
			1t	1.5kW	7.5, 11kW	15, 18.5, 22kW		
	Frequence	cy of detect current			20 to 200Hz			
	Maximum v	oltage of motor circuit			AC690V 50/60Hz			
	Operatio	onal power source			100 to 240VAC±10%, 50/60Hz			
	· · ·		4t	0.15 to 1.60A (0.01A)		(): Increment		
	Overcurrent	Number of wires pass	2t	0.30 to 3.20A (0.02A)	3.00 to 17.0A (0.1A)	_		
	seming	through the CT hole	1t	0.60 to 6.40A (0.04A)	6.00 to 34.0A (0.2A)	10.00 to 60.0A (0.4A)		
		Start time		0 to	12.0s (0.2s and larger: Increment 0.	.1s)		
_		Shock time			0.2 to 5.0s (Increment 0.1s)			
io		Current detection accure	ıcy	±5	% (In case of commercial power sour	ce)		
S S	Accuracy	Time detection accur	acy	±5%				
-f		Under current		Trip at 0.2 to 5s (OFF: No action)				
ī	Loc	k when starting up		Set at 2 to 8 times of overcurrent setting value (OFF: No action) Trip after Start time + 0.2s when starting up.				
ect	Lock when operating		Set at 1.5 to 8 times of overcurrent setting value (OFF: No action), trip at 0.2 to 5s.					
ţ	2 Phase-reversal		Trip within 0.15s, (OFF: No action)					
₽	- Phase loss			Trip at 0.5 to 5s (OFF: No action)				
		Imbalance		Trip at 1 to	10s (OFF: No action) when setting at	10 to 50%		
		Alarm		Outpu	ut when A, F and H are set (OFF: No a	action)		
		Running hour		Trip when 10 to 9990hr is set (OFF: No action)				
		Fail-safe		Activated when setting ON (Conducting normally: Excited, Trip: Non-excited)				
~		Rated load		$3A,250VAC (\cos \phi = 1)$				
	Minim	num allowable load *1		DC24V, 4mA				
t e		Life		Activation 100,000times at rated load				
b	Co	ntact arrangement		OC:1c,AL/UC/TO:1a				
Ő	Porot	Self-holding		E-r: Manual release or reset of power source, H-r: Only manual release				
<u> </u>	Kesei	Auto-reset		A-r: Auto-reset and set the return time at 0.2s to 20min				
	A	nalog output		Analog output 4 to 20mA DC Output (OFF: No action) Allowable load resistance: 10Ω and below				
	Comm	unication output		RS485/Modbus				
	Insulation resistar	ice (Between housing-circuit	t)	DC500V 10MΩ				
Dielectric strength Between housing-circuit		2000VAC 60Hz 1min.						
voltage Between relay contacts		1000VAC 60Hz 1min.						
÷	te Place		Indoors, where it will not get wet					
nei	a Ambient temperature			-20 to + 60 °C				
onr	Ambient humidity		30 to 85%RH [No dev condensation]					
		Alfitude		2000m and below				
en		Atmosphere		No corrosive gas, oil-mist or dust				
		vibration		5.9m/s' and below				
	Powe	er consumption		ZVA and below				
Approx. mass		0.3kg and below						

*1: In case inputting the output relay contact to programmable controller (PLC) directly, input through the relay for minute current, because contact failure may happen due to minute current.

Part names and Functions

Releases the trip or returns back to the initial setting display. Pushing the reset button after completing parameter settings to return back to initial screen.

2 UP/DN button (UP/DOWN)

Switch to parameter mode and change data settings.

3 SET button (set)

Confirm and register parameter setting data.

a. Phase display LED

Displays the phase (L1(R) \rightarrow L2(S) \rightarrow L3(T)) which shows the current, changes every 2 seconds.

b. Unit display LED

- LED which Indicates the unit.
- c. Load ratio display bar graph

Can be utilized as a guide when setting OC (Overcurrent setting value). Displays the ratio as a percentage (%); Operational load current/OC current setting value

d. 7 segment LED

Displays operation current, parameter setting value, cause of trip, etc.

5 Terminal arrangement

	00	OC AL	./UC/Т				CO	ММ	
	#	÷	÷	4~20	JMA				
	90		Ð		몔	៙	몔	몔	▣
<u>A1 A2 9</u>	95 96	98	08	+	-	V-	D1	DO	S
	J.				711	Γ	Ρl		

Applicable wire

Wire: ISO 1 to 25mm², AWG#18 to 1475°C copper wire Strip length: 8mm

No. of connectable wires: Up to 2 for one terminal Tightening torque: 0.8 to 1.2N · m

Terminal symbol	Function	Explanation
A1, A2	Operational power source	Connect AC100 to 240V, commercial power source
95	Common terminal	Terminal 96, 98, 08 common
96		b contact: Normal-close, Overcurrent-open (In case FS:OFF)
98		a contact: Normal-open, Overcurrent-close (In case FS:OFF)
08	AL/TO/UL output	Alarm output/Running hour output/Undercurrent output
+	Analog	Output analog current DC4 to 20mA
V-, D1, D0, S Terminal for		Connect when using communication function.

Digital ammeter functions

tion. Release by pushing the ESC button.

pushing the ESC button.

1) While in normal operation, it is possible to change the displayed

2) Trip record (3 most recent) can be viewed by pushing and

phase, and set it by pushing the SET button. Release by

holding the ESC button 5 sec. or longer. Push the UP/DN buttons to cycle through and confirm current values (cycles L1

 \rightarrow L2 \rightarrow L3 \rightarrow L1 \rightarrow ...). The order of the trip record appears on a bar

graph in the order of 100%. 95%, and 90% for easy confirma-

Operating mode

Overload operating mode

Light load operation (Under-load detection) mode

Once the motor current falls below the preset level, under-load is detected and a signal is sent to stop the motor.

*However, in case of the under-load detection, the output contact becomes choice either alarm output.

Model No.

"What is a 4 to 20mA analog signal?"

A 4 to 20 mA analog signal is a standard instrumentation signal used around the world. Instrumentation signal:

· Voltage signal: DC 0 to 5 V, DC 0 to 10 V, etc.

• Current signal: DC 4 to 20 mA, DC 0 to 20 mA, etc.

Current signals are less susceptible to influence from noise than voltage signals.

In addition, DC 4 to 20 mA, when compared to DC 0 to 20 mA, is more precise in the event of wire disruption or breaks. Therefore, DC 4 to 20 mA is used frequently, specifically in the case of long transmission distances (several tens of meters) or in answer to requests for reducing noise influence..

<Example of application>

- ①Automatic control of the input and viscosity depending on the load by inputting the load current of a crusher or mixer to the sequencer.
- ②Figuring out the operation and loading conditions for the equipment by recording the load current of a trial unit, and using it as the basis for an optimal equipment design.
- . (Activation of a digital and analog meter with DC 4 to 20 mA signal for remote centralized monitoring of pumps, etc.

In the case of TSBSCB60 (Max. 60A), it is possible to transmit DC 0 to 60 A as a DC 4 to 20 mA signal. In addition, output value correction is available due to the scaling adjustment function of the DC 4 to 20mA output of the TSBSC Series.

Setup steps

ltem	Operation button	Operation instruction
1. Selection of parameter	UP/DN	Select the setting parameter by pushing the UP/DN button.
2. Preparation for setting	SET	The setting value begins blinking when the SET button is pushed after selecting a parameter.
3. Selection of setting	UP/DN	Push the UP/DN button until the desired setting value is shown.
4. Register of setting	SET	Press the SET button after selecting the setting value, the blinking value indication returns to normal and the setting value is registered.
5. Initial indication	ESC	Push the ESC button to return to the initial indication after completing the settings. In the case that no button is pushed, returns to initial indication automatically after 50 seconds.

Parameter

NI-		Para	meter	Evaluation of function						
INO.	/v\enu	Initial Value Setting Value								
			0	All parar	All parameter settings are possible.					
1	Parameter lock	PE: []	1	To lock parameter settings, input "1" for every parameter set. To unlock the setting, input "1", then "0". When <u>PE:</u> is displayed, the setti completed.						he setting is
	Selection of	וחר וח	3Ph	Monitori	ng 3 phase mo	tor				
2	phase No.	רח:כרח	1 Ph	Monitori	ng single phase	e motor.				
			dE	Operate	s with definite ti	ime characte	eristic.			
3	Operation	teedE	th	Operate characte (Refer to	s with inverse ristic. Thermal charad	time chara cteristic char	cteristic and is t on page 120	cumulative .)	as in the case	of thermal
	curve		In	Operate 120.)	s with inverse	time charac	teristic. (Refer t	o Inverse ch	naracteristic cho	art on page
			no	Setting fo	or disabling the	upper limit	detection.			
4	CT ratio	ct: It	1t,2t,4t	Setting the number of motor wires that pass through the CT (1t: 1time, 2t: 2 times, 4t: 4 times) Type 34; only 1t and 2t, Type 60; only 1t						
			100,200,300	Select when using External CT (Type 06 only)						
F		<i>cc_cc</i>	oFF	Normal mode When a trip occurs, the relay turns ON (95-96: Open, 95-98: Closed).						
Э	rali Sare		on	Fail safe mode After the power is turned on, the relay turns ON (95-96: Open, 95-98: Closed) and when a trip occurs, the relay turns OFF (95-96: Closed, 95-98: Open). * This setting becomes effective after a power reset.						-98: Closed); Open).
6	Reverse phase detection	r P:oFF	oFF on	Set to "or	" when detecting	g phase-rever	sal.			
				Set the c over 324	urrent value for A for inverse timent setting ta	r overcurren ne character a ble	t. For type 34 c ristics "th" and	and 60, the "In" .	current value co	unit: (A)
					06 ty	ре	34 ty	ре	60 ty	be
				CT Ratio	Setting range	Increments	Setting range	Increments	Setting range	Increments
	0			1t	0.60 to 6.40	0.04	6.00 to 34.0	0.2	10.0 to 60.0	0.4
7	threshold	oc:6.40°	See the right	2t	0.30 to 3.20	0.02	3.00 to 17.0	0.1		
				4t	0.15 to 1.60	0.01	4			
				100	12.0 to 128	1				
				200	24.0 to 256	1				
				300	36.0 to 384	1			/	

Parameter

Na	Manu	Para	meter	Explanation of function			
140.	Weno	Initial Value	Setting Value				
8	Start time	dt D2.	0	When setting the inverse time characteristic "In", be aware that it operates in Cold characteristic from the starting of the motor until the current becomes lower than OC setting, and then operates in Hot characteristic after that.			
			0.2 to 12.0s	The relay does not output within the time setting, so as to not operate when the motor starts. When inverse time characteristic "In" is set, it operates in Hot characteristic after Start time.			
0	Over current	ot: 02.	0.2 to 5.0s	Set continuous overloading time of the overcurrent setting.			
	Shock time	cl5: 1.	1 to 30	Select the operation characteristic when inverse time characteristic "th", "In" are set. (Re to Thermal and inverse characteristic charts)			
10	Under current threshold	uc:oFF*	oFF See the right	Set current value when detecting undercurrent. This cannot be set higher than the overcurrent value. Relay output for undercurrent is as follows: Alarm ALo is set to "except uc": outputs at OC terminal Alarm ALo is set to "uc": outputs at AL/UC/TO terminals			
11	Under current Shock time	ut: 02.	0.2 to 5.0s	Set continuous under-loading time of under-current setting.			
12	Phase loss	PL:oFF	oFF on	Set to "on" in the case that phase loss is detected.			
13	Phase loss time	PLE05.	0.5 to 5s	Set operation time in the case that phase loss is detected. When phase loss detection is set to oFF, it does not display.			
			oFF	Set to 10 to 50% in case imbalance is detected.			
14	threshold	Ub:oFF	10 to 50%	Imbalance ratio (%) = (Max.Current-Min.Current) Max.Current ×100			
15	Imbalance duration	ЦБЕ: Т	1 to 10s	Set operation time in the case that an imbalance is detected. When imbalance detection is set to oFF, this does not display.			
16	Stall threshold	Sc:oFF	oFF 2 to 8 times	Set the ratio against overcurrent setting in the case of detecting the lock when starting. Setting range; Sc setting value $\times OC \leq 250A$. This parameter is not displayed when the start time is set to 0s.			
17	lam throshold	IR-EE	oFF	Set the ratio against overcurrent setting in the case of detecting the lock when running.			
17	Juli mesnolu		1.5 to 8 times	Setting range; JA setting value $\times OC \leq 250A$.			
18	Jam fault duration	JE: 02.	0.2 to 5s	Set the operating time in the case of detecting the lock when running. When lock JA is set to oFF, it is not displayed.			
19	Analog Output	<u>r 5.5</u> 40°	See the right	Set the current value as analog current output scale for 20mA output. Refer to page 117 Current setting chart for setting range.			
			oFF	Set when disabling analog current output.			
			no	Set when disabling alarm output.			
			A				
		BL ooo	F	Set when enabling alarm output. Refer to the table on page 119.			
20	Alert		Н				
			to	Set to trigger an output when the running hour is set.			
			UC	Set in the case of detecting under-load.			
		RL:oFF	oFF 50 to 100%	Set the ratio against the OC current when alarm outputting.			

SC Series

Parameter

N		Parameter		
INO.	Menu	Initial Value	Setting Value	Explanation of function
			E-r	Self-holding after trip, back in when power is reset or ESC button is pushed.
21	D .	rt:E-r	H-r	Self-holding after trip, back in when ESC button is pushed.
21	Keser		A-r	Automatic reset after trip.
		Rr: 85.	0.2s to 20min	Set automatic reset time
22	D altrait	55	oFF	There is no limit to the number of resets
22	Keset limitation		1 to 5	Set the number of reset operations (within 30 minutes).
23	Total running hour	-Erh-		Display total running hours
24	Running hour	- <i>ch</i> -		Display operational time since inputting running hours setting time.
25	Running hour setting	rh:oFF	oFF	To output the running hours, set the number of hours. The running hours will be counted
			10 to 99990hr	from the point when the input is completed.
		8.4: 1 bP:19.2		Set the communication address
26	Communication			Set the communication speed 1.2, 2.4, 4.8, 9.6, 19.2, 38.4kbps
20	setting	PriEun	odd, Evn, non	Set the parity
		LE:oFF	oFF, 1 to 999s	Set the waiting time until an error is displayed when there is communication trouble.
27	Test mode	LESL		In the case that the set button is pushed when this is displayed, after 3 sec. + Shock Time, <u>End</u> is shown and relay is output.

Alarm

Operating mode ALo selection	When motor starts	Normal operation	When exceeding alarm setting value	When trips
Operational output <u>RL a:</u> R			· ·	
		-	<u>ls</u> Itime/s	2time/s
		→	<mark>↓ls</mark>	1

Trip display

Trip function	Indication	Contents of trip	Solution
Over current	•oc: 3.6•	After the preset Start time period, the current exceeds the upper setting value and continues to flow longer than the preset Shock time. Trip current is 3.6A.	Check the abnormality of machine
Phase loss	•PL -r	Trip due to phase loss of R(L1) phase	Check the abnormality of machine
Phase reversal	- <i>-</i> P-	Trip due to phase reversal	Check phase sequence with phase sequence meter
Stall (Lock when starting)	•5 <i>c:35.</i> 0*	When the motor starts, the current exceeds Sc setting value and continues to flow longer than the preset Start time.	Check the abnormality of machine
Jam (Lock when operating)	<i>.1R: 15.8</i> *	When motor is operating, the current exceeds Ja setting value and continues to flow longer than Jt setting time.	Check the abnormality of machine
Imbalance	. Ub: 4.2*	Current of each phase becomes imbalanced larger than the Ub setting value, and continues to remain imbalanced longer than the Ubt setting time.	Check the power source, motor and motor wiring
Under current	•uc: (5*	After the preset Start time period, the current under-runs the lower setting value and continues to flow longer than the preset Shock time. Trip current is 1.6A.	Check the abnormality of machine
Limitation of the number of auto- reset	rnFul	Number of auto-resets after trip exceeds the setting value within 30 minutes.	Check the abnormality of machine

Inverse time characteristic charts

Number of motor wires that pass through the CT (current transformer) hole

Refer to the table below for the number of motor wires that pass through the CT. The values in this table are just a guide for when the motor is used at load ratio of 80 to 100%. In case that motor load ratio is low, increase the number of motor wires to pass through to improve the setting accuracy.

In addition, in case of motors not in the table below (small size, single phase, different voltage, etc.), select and set an appropriate model and number of motor wires that pass through the CT based on the setting current values.

	3 phase AC 200V class m	notor	3 phase AC 400V class motor			
kW	Applicable Shock Relay Model No.	Number of motor wires that pass through the CT	kW	Applicable Shock Relay Model No.	Number of motor wires that pass through the CT	
0.1	TSBSCB/S06	4	—	-	—	
0.2	TSBSCB/S06	2	0.2	TSBSCB/S06	4	
0.4	TSBSCB/S06	2	0.4	TSBSCB/S06	2	
0.75	TSBSCB/S06	1	0.75	TSBSCB/S06	2	
1.5	TSBSCB/S34	2	1.5	TSBSCB/S06	1	
2.2	TSBSCB/S34	2	2.2	TSBSCB/S34	2	
3.7	TSBSCB/S34	1	3.7	TSBSCB/S34	2	
5.5	TSBSCB/S34	1	5.5	TSBSCB/S34	2	
7.5	TSBSCB/S60	1	7.5	TSBSCB/S34	1	
11	TSBSCB/S60	1	11	TSBSCB/S34	1	
-	_	_	15	TSBSCB/S60	1	
-	-	_	18.5	TSBSCB/S60	1	
-	-	-	22	TSBSCB/S60	1	

Note 1) Set the parameter "CT ratio" based on the number of motor wires that pass through the CT.2) In case that the motor kW exceeds the above table, use external CT.

Specification of External CT

	Mode	el No.	TSB3CTC100	TSB3CTC200	TSB3CTC300			
⊢	Class		Grade 3					
U U	Rated prim	nary current	100A	200A	300A			
una	Rated secondary current		5A					
xte	Rated burden		5VA					
ш	Rated frequency		50/60Hz					
	Approx. mass		0.9kg					
ef.	Applicable main unit model No.			TSBSCB/S06				
L LE	Adapted	200V class	15 to 18.5kW	22 to 37kW	45 to 75kW			
щ	motor	400V class	30 to 45kW	55 to 90kW	110 to 132kW			

Connection diagram

Basic connection diagram

- Note) 1. If necessary, set transformer (Tr) depending on the voltage on the Shock Relay and electromagnetic contactor (MC). Install an isolating transformer if there is any harmonic noise generating device, such as an inverter.
 - 2. Output relay; Normal condition: not excited, Trip condition: excited Coil capacity of MC connected with output relay of Shock Relay is; Throw: less than 200VA, Hold: less than 20VA

As a guide, in case of TSBSCB60/TSBSCS60, set auxiliary relay, and activate auxiliary relay with output relay of the Shock Relay, and open/close MC with the contactor of the auxiliary relay.

Communication function

Communication specification

ltem	Content			
Transmittance standards	RS-485			
Max. transmittance distance	1200m (Depends on transmittance speed)			
Transmittance system	Half-duplex system Protocol: modbus			
Transmittance speed	1.2k to 38.4kbps			

Connection with signal converter

1) Prepare a signal converter to use the monitoring software (PCON) of TSBSC.

2) Use twist cables and connect as follows.

COMM									
V-	D1	DO	S						
\mathbf{r}	F								

Terminal	Signal	RS485 Terminal	
V-	GND	GND	
D1	Data (B)	Tx+	
DO	Data (A)	Tx-	
S	Shield	Shield	

Communication function

Monitoring software (PCON)

Monitoring software for PC is available.

It is possible to communicate between PC and Shock Relay through a signal converter (RS485/USB; commercially available).

Main function

The following can be performed on the PC screen;

- \Diamond setting of the parameters for the Shock Relay
- \diamondsuit monitoring of the changes in the motor current
- \Diamond confirmation of the trip record

Things to prepare

- ① RS485/USB signal converter (commercially available)
- (2) USB cable (commercially available; which fits the size of slot of (1))
- ③ Twist pair cable with shield (commercially available)
- (4) Terminating resistor (120 Ω , 1/4W and larger)
- ⑤ Special monitoring software "TSBSC PCON" CD-ROM * For ④ and ⑤, contact TEM.

Connection method

- Connect the terminal V-, D1, D0 and S with the cable.
- Connect the terminating resistor 120Ω between terminating terminal D1 and D0.
- **3** Connect the PC and the signal converter with a USB cable.

- Communication setting at PCON side
- Selection of the other communication party
 - Starting of the communication

Setting the address of the main unit

Set the address and the communication method to each Shock Relay main unit in advance, before starting communication. Set the following item by calling up parameter 26 communications setting.

Address (1 to 247), Communication speed (1.2 to 38.4kbps), Parity (EVEN, ODD, non), Communication loss time (off, 1 to 999s)

Setting of the special software "TSBSC PCON"

First, install the special monitoring software and signal converter software to the PC.

- When the desktop icon is clicked, the software is activated, and the PCON operating display appears on screen. Set the communication settings for the PCON side to be the same as the communication method for the Shock Relay main unit. In addition, select the PC port number in which the USB cable is connected, as [ComPort].
- 2 Select the address of the Shock Relay of the other communication party.
- Click the link icon to begin communication.

*In the case that communication with a PLC (sequencer) is necessary without using PC monitoring software, consult TEM.

Getting method of the monitoring software (PCON)

Consult TEM.

Outline dimensions

Shock Relay ED Series

Features

Displays both the motor current and each setting value digitally

Economically priced

CT included in one compact unit

Works with inverter

Current can be precisely detected when inverter is operating between 20 - 200Hz.

Choose between self-holding output relay and automatic reset

CE marking

UL · cUL certification

CCC certification

*To prevent an unnecessary trip due to an increase of amperage when accelerating and decelerating, slowly accelerate and decelerate or allow some leeway for set current.

Standard Specifications

CT all-in-one model CT (current transformer) TSB020ED a TSB020ED-1 TSB220ED-1 TSB020ED-2 TSB220ED-2 TSB075ED-1 TSB550ED-1 TSB075ED-2 TSB550ED-2

Model			Control power supply voltage 100 to 120V		TSB020ED-1	TSB075ED-1	TSB220ED-1	TSB550ED-1			
		el	Control power supply voltage 200 to 240V		TSB020ED-2	TSB075ED-2	TSB220ED-2	TSB550ED-2			
			200V	No. of wires that pass through	wires that pass through T2		0.4kW	1.5kW	3.7kW		
tor	App	olicable	class	the CT hole, DIP switch ^{*4}	T1	0.2kW	0.75kW	2.2kW	5.5kW		
	m	otors	400V	No. of wires that pass through	T2	0.1, 0.2kW	-	2.2, 3.7kW	7.5kW		
X			class	the CT hole, DIP switch ^{*4}	T1	0.4, 0.75kW	1.5kW	5.5kW	11kW		
			Frequency	y of motor current			20 to 2	200Hz			
		1	Maximum r	notor circuit voltage			AC600V	50/60Hz			
0	nora	ting nov	ver supply	1			100 to 120VAC:	±10%, 50/60Hz			
	peru	ing por	wei soppiy	2			200 to 240VAC:	±10%, 50/60Hz			
				No. of wires that	т2	0.20 to 1.20A	1.20 to 3.20A	3.00 to 10.0A	6.00 to 26.0A		
	-	Curre	ent setting	pass through	12	(0.01A increments)	(0.02A increments)	(0.1A increments)	(0.2A increments)		
ions		ro	ange *3	the CT hole,	т1	0.40 to 2.40A	1.80 to 5.80A	4.00 to 14.0A	9.00 to 34.0A		
unct	Ove			DIP switch		(0.02A increments)	(0.04A increments)	(0.1A increments)	(0.25A increments)*2		
on f				Start time ^{*3}		0.2 to 10.0s (0.2s increments)					
tecti			:	Shock time ^{*3}		0.2 to 5.0s (0.2s increments)					
Pro	Index		Current	detection accuracy		$\pm 5\% \pm 1$ digit or less (except, when combined with the inverter, $\pm 10\% \pm 1$ digit or less)					
	Aca		Terr	nporal accuracy	\pm 5% \pm 1 digit or less						
			Lock	ed rotor start		It will trip if the set current value exceeds 200% when starting, after the set start time +0.2s has eld					
	Rated load					3A, 250VAC(cos/=1)					
~			Minimur	n allowable load		DC24V, 4mA					
rela	<u>b</u> Life span					100,000 times at rated load					
put			Conto	act constitution			1a	1b			
Out			C	Operation		Energization/normal operation: no excitation; at the time of trip: excitation					
	Reset Trip reset, A				Α	After resetting to normal current value, it takes 1s to automatically reset					
			501	DIP switch	М		Can be manually reset by p	pressing the "RESET" button			
Insibila			Between	case and circuit			DC500\	/, 10ΜΩ			
Istanc			Between	case and circuit	2000VAC 60Hz: 1 minute						
			Relay co	ontact electrodes	1000VAC 60Hz: 1 minute						
E Location Indoors, where it will not get wet											
viron			Ambie	ent temperature	-20 to +50°C						
irk en			Amb	ient humidity	slity 30 to 85%RH (no condensation)						
Š				Altitude			2000m	or less			
			Powe	r consumption		2.0W or less					
Mass				Mass		0.25kg or less					

*1. The applicable motors are just a rough indication for reference. Make your selection based upon actual electrical current value.

Select by electrical current value for single-phase motors as well. *2. Set values 10A and higher are displayed as described on the right due to a maximum number of display digits. 10.0A→10.2A→10.5A→10.7A→11.0A

*3. A ± 1 digit error can occur with the current and the set time in the range indicated. *4. Be sure to make one turn when selecting T1 and two turns when selecting T2.

Shock Relay

Part Names and Functions

Current Setting (CURRENT)

Sets current at the value at which trip occurs.

2 Start Time Setting (START TIME)

Sets start time (start compensating time). When the motor starts, there is a possibility that the motor current will exceed the set current value, but during the start time period it will not trip.

Shock Time Setting (SHOCK TIME)

Sets shock time (output delay time). When the motor current exceeds the set current value the count begins, and when shock time has elapsed, it will trip.

4 DIP Switch (selector switch)

Setting	Purpose						
No. of motor wires that pass through the CT T1/ T2	Current value set range selection	Τl	No. of passes through the CT:1	Т2	No. of passes through the CT:2		
Trip reset A / M	Output relay reset selection	A	It automatically returns from the trip state 1 second after current value returns below the current setting value.	М	Trip state is maintained until the check/ reset button is pressed. It then resets.		

5 TEST Button (TEST)

When the LED displays current value, pressing the TEST button will carry out an operation test.

6 CHECK/RESET Button (CHECK/RESET)

[During normal operation]

By pressing the CHECK/RESET button when the LED displays current value, it switches to the setting screen.

[During trip]

When the CHECK/RESET button is pressed, trip is cleared and the display switches to the current value. [During set-up]

When the LED display is at the setting screen, pressing the CHECK/RESET button will switch between the current, start time, and shock time settings, in this order.

7 LED Display

Current value and set current are displayed when (A) is indicated on the display screen (to the left of the A). (A = ampere)

Start time and shock time set up are displayed when (s) is indicated on the display screen (to the left of the s). (s = second)

Shock Relay

The ED Series has the following features, which the Meter Relay (analog type) does not include:

- Start time (starting compensation) function
- Shock time (output delay) function
- Compact design, includes CT
- Works with inverter driving
- Choose between self-holding output relay and automatic resetting
- Includes test function
- Detection of locked rotor start

ED Series

Meter Relay (analog type)

Basic connection diagram

СВ

6

F [

TR W

 \sim

A1 A2

95 96

97

R(L1) 0 0

S(L2) T(L3)

Shock Relay

ED Series

MC OCR

T1 T2

Shock Relay

RUN

TRIF

ED Series

ሻካ

Stop Start

MC

ľЧ

A1 A2 95 96 97 98

Motor

Operating Mode

Outline dimensions

Model No.

Shock Relay

Shock Relay 150 Series

Features

- 1. Analog meter
- 2. Self-holding type
- **3.** Special MTO models and additional specifications are available

Standard Specifications

Function			TSB151-COM	TSB152, TSB AT*2			
		200V class	0.2 to 3.7kW*1	5.5 to 90kW			
	Motor	400V class	0.2 to 3.7kW	5.5 to 90kW			
noi		Ambient temperature	-10°C to 50°C				
mm		Relative humidity	45 to 85% RH; there is no condensation				
Ŭ	Work environment	Vibration	Less than	5.9m/s ²			
		Height	Less than	1000m			
		Ambient atmosphere	No corrosiv	re gas, dust			
	Main	unit model	TSB151	TSB152			
	Load current	(current range) ^{*4}	30 to 130% (100%=5mA)	30 to 130% (100%=5A)			
	Current accuracy setting		±10% (fr	ull-scale)			
	Time catting range		0.2 to	o 20s			
	Time seining runge	Shock time ^{*4}	0.2 to 3s				
	Control powe	er supply voltage	AC100/110V or AC200/220V 50/60Hz $\pm 10\%$				
	Max. motor circuit voltage		AC600V, 50/60Hz				
	Current detecting system		1 phase CT system				
	Output relay	Self-holding	Self-holding	g available			
Jnit		Normal state	Output relay	not excited			
ain		Abnormal case	Output relay excited				
Š		Contact rating	1 c contact, AC250V 0.2A (inductive load cos¢=0.4)				
		Minimum applicable load ^{*3}	DC24V, 4mA				
	Output relay life-span	Mechanical	10,000,000 times				
		Electric	100,000 times				
	Test	function	Included				
		Gap between circuit and housing	AC1500V, 60Hz, 1 minute (power	supply circuit and contact circuit)			
	Withstand voltage	Contact gap	AC700V, 60	Hz, 1 minute			
		Circuit gap	AC1500V, 60Hz, 1 minute (power	supply circuit and contact circuit)			
	I	Mass	1.0kg	1.2kg			
	Consu	med power	1.2	VA			
	External acc	essory CT model	TSB COM	TSB AT (···Rated input current value)			
Ъ	Rated in	nput current	0.75A, 1.5A, 1.75A, 2.0A, 2.5A, 3.3A, 4.0A,	100A, 120A, 150A,			
mal		•	5.3A, 7.0A, 9.0A, 10.0A, 16.0A	200A, 250A, 300A			
Exter	Rated o	utput current	5mA	5A			
-	Rat	ed load	0.5VA	5VA			
	I	Mass	0.5kg	0.6kg			

Notes: *1. If the TSBCOM-A (small capacity type CT) is used, it is possible to use a less than 0.1kW motor. *2. TSB152 and TSB _____AT (CT) have different model numbers.

*3. When directly inputting output relay contact into the programmable controller (PLC), be aware that a minute electric current can cause contact failure. As for the input to PLC, it is recommended to drive the relay coil for minute current by relay signal of Shock Relay at first, then input this relay contact to PLC. *4. Current and time setting ranges can be set within the warranty range, but not the upper or lower level of setting volume.

Part Names and Functions

% Display Meter

The meter displays the percentage of the motor rated current vs. the motor current in operation. (The rated current here is based upon the Motor Rated Current CT selection table on page 100.)

LOAD CURRENT volume

Can be set to stop the motor at the desired level when overload occurs. When the motor current exceeds the preset CURRENT value (at the same time, overload time continues to exceed the preset SHOCK TIME), the Shock Relay activates and stops the motor.

% Adjust Volume

If the input from CT is 5mA (TSB151) or 5A (TSB152), the meter can be modified in the 95 to 130% range. Also, after adjusting the % adjuster, the meter scale indicator and load current set scale are the same.

START TIME volume

When the motor starts there is a possibility that the motor current will exceed the set current value.

To prevent the Shock Relay from tripping due to the spike in start current, start time is set a little bit longer than the period of motor start up to ignore the spike.

Terminal

The terminal is located on the upper portion of the Shock Relay, making wiring easy.

POWER indicator

The POWER indicator lights when Shock Relay is turned on.

Activation (SHOCK) indicator

The activation (SHOCK) indicator lights when the Shock Relay operates.

TEST button

Shock Relay operation can be tested stand-alone or during motor operation.

 $\left(\begin{array}{c} \mbox{When testing the Shock Relay, continue to press and hold the TEST button} \\ \mbox{longer than the set START TIME or SHOCK TIME, whichever is longer.} \end{array} \right)$

RESET button

After the Shock Relay activates, the RESET button is used to cancel the self-holding of the output contact.

SHOCK TIME volume

Shock time is the amount of time set until the Shock Relay will activate when overload occurs. Within the set time, the Shock Relay will not activate, even if it is overloaded.

Standard model and special model additional specifications chart

	Additional specifications	Subtropical spec.	Control power supply voltage modification	Panel mounting	Start time modification	Shock time modification	Auto-reset
Model		S	V	Р	T1	T2	Н
Standard	151/152	O	O	Ô	O	O	O
Impact load detection	151M/152M	\bigcirc	0	\bigcirc	O	O	O
1A input (motor capacity is not necessary to consider)	152C	\bigcirc	0	\bigcirc	O	O	O
Upper/lower limit	151W	\bigcirc	0	0	O	O	O
detection	152W	O	0	Ô	O	O	0

Notes: 1. Refer to page 112 for detailed specifications

2. For additional specifications V, specify operation power source

3. For additional specifications T1 and T2, indicate the start time and shock time modification time.

O : Multiple specifications available

CT (current transformer)

Common CT: for motors up to and including 3.7kw

- TSB COM (standard type) can be used with 0.2 to 3.7kW motors
- · TSB COM-A (small capacity type) can be used with motors up to and including 0.1kW.

TSB COM (standard type)

	Power su	pply: AC20	0/ 220V	Power supply: AC400/ 440V				
/Notors	Motor rated	Connectin	g terminal	Motor rated	Connectin	g terminal		
(K * *)	current (A) Motor side		Shock Relay side	current (A)	Motor side	Shock Relay side		
0.2	1.75	K-L ₂	k-lı	0.75	K-L ₂	lı-l2		
0.4	2.5	K-L ₂	k-l2	1.5	K-L ₂	l2-l3		
0.75	4.0	K-L ₂	k-l3	2.0	L1-L2	l2-l3		
1.5	7.0	K-L	k-lı	3.3	L1-L2	k-l2		
2.2	10.0	K-L	k-l2	5.3	L1-L2	k-l3		
37	16.0	K-L	$k_{-}\theta_{2}$	90	K-L	0.0.		

Note: Common type CT, motor side L1-L2; Shock Relay side ℓ 1- ℓ 2 combination, 1A output CT can be combined.

TSB COM-A (small capacity type)

Connecting terminal				
Motor side	Shock Relay side			
K-L ₂	k-b			
K-L ₂	k-b			
K-L ₂	k-b			
K-L	k-b			
K-L	k-b			
K-L	k-b			
	Connectin Motor side K-L2 K-L2 K-L2 K-L1 K-L1 K-L1			

Note: Select by current value

Through-type CT for motors 5.5kW and above

· Select a CT size applicable to motor capacity.

	Power su	pply: AC20	0/ 220V	Power supply: AC400/ 440V			
(kW)	Motor rated current (A)	CT size	Number of wires that pass through the CT hole (T)	Motor rated current (A)	CT size	Number of wires that pass through the CT hole (T)	
5.5	25	100AT	4	14	100AT	7	
7.5	30	120AT	4	20	100AT	5	
11	50	100AT	2	25	100AT	4	
15	60	120AT	2	30	120AT	4	
19	75	150AT	2	37	150AT	4	
22	100	100AT	1	50	100AT	2	
30	120	120AT	1	60	120AT	2	
37	150	150AT	1	75	150AT	2	
45	170	200AT	1	85	100AT	1	
55	200	200AT	1	100	100AT	1	
75	250	250AT	1	130	150AT	1	
90	300	300AT	1	150	150AT	1	

In the case the single-phase motor or motor capacity is not on the selection chart, use the following calculation to make your selection:

CT size \geq motor rated current x number of wire(s) passing through the CT hole

Basic connection diagram

Special models and additional specifications

TSB151P, TSB152P (panel mounted type) outline dimensions

Notes on CT (current transformer) selection

The load current meter of the Shock Relay shows 100% at the time of the motor rated current value in the chart.

When the actual motor rated current value is not on the chart, use a CT on which the load current meter shows an 80 to 100% range when rated current flows.

Shock Relay SS Series

Features

Output relay self-holding type	
Output relay return type when detecting over-current (fail-safe)	
Economically priced	
Broad current setting range	
High repeating accuracy	
Includes TEST/ RESET buttons	ſ
All-in-one unit with CT (current transformer)	l
Special model for the conformance to UL/cUL standards	
CE marking	
DIN rail (35mm) mountable	
Can be used with a single-phase motor	
Special model for the conformance to CCC standards	

Standard Specifications

All-in-one unit with CT CT (current transformer) TSBSS05 TSBSS30 TSBSS60 Externally mounted CT type External CT (current transformer)

TSBSS100 (TSBSS05+TSB2CT100) TSBSS200 (TSBSS05+TSB2CT200) TSBSS300 (TSBSS05+TSB2CT300)

			700.000.5		705.00 (0			7000000			
Iter	ns	Model No.	TSBSS05	TSBSS30	TSBSS60	TSBSS100	TSBSS200	TSBSS300			
	Load current (c	current setting range) ⁻³	0.5 to 5A	3 to 30A	5 to 60A	10 to 100A	20 to 200A	30 to 300A			
	Applicable	200V class	0.1 to 0.75kW	1.5 to 5.5kW	7.5 to 11kW	15 to 18.5kW	22 to 37kW	45 to 75kW			
	motor capacity	400V class	0.2 to 2.2kW	3.7 to 11kW	15 to 22kW	30 to 45kW	55 to 90kW	110 to 132kW			
ç		Ambient temperature			−20°C	to 60°C					
ощ	Work	Ambient humidity		45 to 85%RH; no condensation							
Ш	environment	Vibration			Less than	5.9m/s ²					
0		Altitude		Less than 2000m							
		Ambient atmosphere		No corrosive gas, dust							
	Unit	model No.	TSBSS05	TSBSS30	TSBSS60	TSBSS05	TSBSS05	TSBSS05			
	Current s	setting accuracy			±10% (f	ull scale)					
	Set time	Start time ^{*3}			*4 0.2	to 30s					
	range	Shock time ^{*3}		*50.2 to 10s							
	Control power	supply voltage (L1 - L2)			AC100 to 24	0V, 50/60Hz					
	Maximum m	notor circuit voltage			AC600V,	50/60Hz					
	Current of	etection system			Two-phase	CT system					
		Self-holding		Includes self-holding							
	Output relay *1	Normal state		At start up there is a 0.5s delay, then the output relay excites							
		Abnormal case		When it trips or the power is shut off, the output relay is not excited							
		Contact capacity	1c contact, AC240V 3A (in the case of a resistance load)								
.±		Minimum applicable load*2	DC10V, 10mA								
S		Reset method	Press the RESET button or cut the operation power								
air	Output relay	Mechanical			10,000,0)00 times					
Σ	life-span '	Electrical	100,000 times								
	Test functions		Internal circuit and output relay operation check								
		Between the circuit and case		AC2000V, 6	0Hz, 1 minute (powe	r supply circuit and co	ontact circuit)				
	Withstand	Between contacts			AC1000V, 60	OHz, 1 minute					
	volidge	Between circuit		AC2000V, 6	0Hz, 1 minute (powe	r supply circuit and co	ontact circuit)				
	Gi	ross mass	0.2kg (not including external CT)								
	Power	When AC110V			2.7VA(0.35W)					
	consumption	When AC200V			11.0VA	(1.2W)					
	DIN r	ail mounting		0			×				
		UL•cUL		* ⁶ ×			×				
		CE		0			×				
⊢	External	CT Model No.		Not needed		TSB2CT100	TSB2CT200	TSB2CT300			
0	Rated p	rimary current		—		100A	200A	300A			
rno	Rated se	condary current		_			5A				
xte	Ro	ated load		_			5VA				
ш	Mass			_		0.5kg					

Notes: *1. During normal operation the output relay is ON, and when the Shock Relay operates it is OFF (refer to page 112).
 *2. When directly inputting output relay contact into the programmable controller (PLC), be aware that a minute electric current can cause contact failure. As for the input to PLC, it is recommended to drive the relay coil for minute current by relay signal of Shock Relay at first, then input this relay contact to PLC.
 *3. Current and time setting ranges can be set within the warranty range, but not the upper or lower level of setting volume.

*4. Although the minimum value on the display is 5s, values smaller than 5s can be set with the dial. *5. Although the minimum value on the display is 1s, values smaller than 1s can be set with the dial.

*6. Special model is available for the conformance to cUL and CCC standards.

Part Names and Functions

LOAD CURRENT volume (A)

Load current can be set to stop the motor at the desired level when overload occurs. When the motor current exceeds the preset CURRENT value (at the same time, overload time continues to exceed the preset SHOCK TIME), the Shock Relay activates and stops the motor.

START TIME volume (s)

When the motor starts there is a possibility that the motor current will exceed the set current value. To prevent the Shock Relay from tripping due to the spike in start current, start time is set a little bit longer than the period of motor start up to ignore the spike.

TEST button

Shock Relay operation can be tested stand-alone or during motor operation.

(When testing the Shock Relay, continue to press and hold the TEST button longer than the set START TIME or SHOCK TIME, whichever is longer.)

RESET button

After the Shock Relay activates, the RESET button is used to cancel the self-holding of the output contact.

SHOCK TIME volume (s)

Shock time is the amount of time set until the Shock Relay will activate when overload occurs. Within the set time, the Shock Relay will not activate, even if it is overloaded.

Operating Mode

SS

Shock Relay

Outline dimensions

Basic connection diagram

- Circuit breaker Magnetic contactor
- N : Start switch
- OFF : Stop switch
- Fuse : Fuse
- Tr : Transformer

Notes:

- Set the transformer depending on the voltage of the Shock Relay and MC. Set the insulation transformer if there is a high-harmonic noise generator such as an inverter.
- 2. When it's running normally, the contact points 95-98 of the TSBSS are "closed" (95-96 are "open"), and when tripping, 95-98 are "open" (95-96 are "closed"). Coil capacity of the electromagnetic contactor MC which output contact opens and closes should be less than 200VA when throwing, and less than 20VA when holding.
- Pass two wires out of three phases of the motor through the Shock Relay's CT in the same direction.

Single-phase motor reference schematic for when using the motor

Notes:

- Set the transformer depending on the voltage of the Shock Relay and MC. Set the insulation transformer if there is a highharmonic noise generator such as an inverter.
 When it's running permatu, the context
- Inverter.

 When it's running normally, the contact points 95-98 of the TSBSS are "closed" (95-96 are "open"), and when tripping, 95-98 are "open" (95-96 are "closed").
 Coil capacity of the electromagnetic contactor MC which output contact opens and closes should be less than 200VA when throwing, and less than 20VA when holding.
- Pass one phase through the Shock Relay's CT in the same direction.

As for the split-phase start and capacitor run motor, connect CT to the main coil side.

Notes on usage

- 1. During normal operation, the output relay is excited (ON). When overload is detected and the Shock Relay activates or the power supply is cut, the output relay is de-excited (OFF).
- 2. Pass the motor wire(s) through the CT hole the number of times referenced in the chart below. In order to increase the current setting accuracy, the number of wires that pass through the CT hole is 2 times or more for small motor currents.

When the motor load factor is low, increase the number of wires that pass through the CT hole as necessary.

Furthermore, when the number of the wires that pass through the CT hole is more than 2, it is necessary to convert the current scale value of current volume.

(Ex.) When a wire passes two times through the CT, the value on the current scale should be at half value.

AC	200V class m	otor	AC400V class motor		
Capacity (kW)	Shock Relay Model No.	No. of wires that pass through the CT hole	Capacity (kW)	Shock Relay Model No.	No. of wires that pass through the CT hole
0.1	TSBSS05	4	_	_	—
0.2	TSBSS05	3	0.2	TSBSS05	4
0.4	TSBSS05	2	0.4	TSBSS05	3
0.75	TSBSS05	1	0.75	TSBSS05	2
1.5	TSBSS30	3	1.5	TSBSS05	1
2.2	TSBSS30	2	2.2	TSBSS05	1
3.7	TSBSS30	1	3.7	TSBSS30	3
5.5	TSBSS30	1	5.5	TSBSS30	2
7.5	TSBSS60	1	7.5	TSBSS30	1
11	TSBSS60	1	11	TSBSS30	1
_		_	15	TSBSS60	1
_	_	—	18.5	TSBSS60	1
_	_	_	22	TSBSS60	1

 Because products conforming to CE markings have been electro-magnetically tested for compatibility based on industrial environmental standards, they are not for household, commercial or light industrial use.

Shock Relay SA Series

Features

- Output relay automatic return type
- Output relay activating type when detecting over-current
- **Economically priced**
- Accurate current setting
- High repeating accuracy
- Test function
- All-in-one unit with CT (current transformer)
- DIN rail (35mm) mountable
- Can be used with a single-phase motor
- Special model for the conformance to CCC standards

Standard specifications

-			7000405	702.04.1.0	7020400	70004/6		70001007	70004005		
Fur	Function Model		TSBSA05	TSBSA10	TSBSA30	TSBSA60	TSBSA100	TSBSA200	TSBSA300		
	Load current (c	urrent setting range) ^{*3}	0.5 to 5A	1 to 10A	3 to 30A	5 to 60A	10 to 100A	20 to 200A	30 to 300A		
	Motor	200V class	0.1 to 0.75kW	1.5 to 2.2kW	3.7 to 5.5kW	7.5 to 11kW	15 to 18.5kW	22 to 37kW	45 to 75kW		
_	capacity	400V class	0.2 to 2.2kW	3.7kW	5.5 to 11kW	15 to 22kW	30 to 45kW	55 to 90kW	110 to 132kW		
Iom		Ambient temperature		-20°C to 60°C							
Con		Ambient humidity		45 to 85%RH: no condensation							
0	Work	Vibration		Less than 5.9m/s ²							
		Altitude		Less than 2000m							
		Atmosphere			No	corrosive gas or a	dust				
	Uı	nit model	TSBSA05	TSBSA10	TSBSA30	TSBSA60	TSBSA05	TSBSA05	TSBSA05		
	Current s	setting accuracy				$\pm 10\%$ (full-scale)					
	Time setting	Start time ^{*3}	*4 0.2 to 10s								
	range	Shock time ^{*3}				^{*4} 0.2 to 5s					
	Operation pov	ver source (A1-A2)			AC1	00 to 240V, 50/6	50Hz				
	Maximum m	iotor circuit voltage		AC600V, 50/60Hz							
	Current detection system		2 phase CT system								
	Self-holding		No self-holding (automatically returns after 1s)								
Jnit	Output relay	Normal state	Output relay is not excited								
ain L		Abnormal case	Output relay is excited								
¥		Contact capacity	0.2A AC250V $\cos\phi = 0.4$								
		Minimum applicable load*2	DC10V, 10mA								
	Output relay	Mechanical				10,000,000 times	i				
	life span	Electrical				100,000 times	I times				
	Test	functions	Internal circuit and output relay operation verification								
	Withstand	Between the circuit and case		AC200	00V, 60Hz, 1 minu	ute (power supply	circuit and contact	ircuit and contact circuit)			
	voltage	Between contacts			AC 1	1000V, 60Hz, 1 m	inute				
		Between circuits		AC2000V, 60Hz, 1 minute (power supply circuit and contact circuit)							
		Mass			0.2kg	ı (excluding extern	al CT)				
	Power	When AC110V				2.7VA (0.35W)					
	consumption	When AC200V				11.0VA (1.2W)					
	DIN r	ail mounting		0				×			
	External	CT Model No.		Not neede	d	TSB	2CT100 1	SB2CT200	TSB2CT300		
Ц	Rated p	rimary current		_		1	00A	200A	300A		
erna	Rated see	condary current		_				5A			
Exte	Ro	ated load		_				5VA			
	A										

Notes: *1. The operation of the TSBSA Series is the complete opposite of the TSBSS Series

*2. When directly inputting output relay contact into the programmable controller (PLC), be aware that a minute electric current can cause contact failure.

As for the input to PLC, it is recommended to drive the relay coil for minute current by relay signal of Shock Relay at first, then input this relay contact to PLC. *3. Current and time setting ranges can be set within the warranty range, but not the upper or lower level of setting volume.

*4. Although the minimum value on the display is 1s, values smaller than 1s can be set with the dial.
*5. Special model is available for the conformance to CCC standards.

- (current transformer) TSBSA100 (TSBSA05+TSB2CT100) TSBSA200 (TSBSA05+TSB2CT200)
- TSBSA300 (TSBSA05+TSB2CT300)

All-in-one unit with CT

Part Names and Functions

LOAD CURRENT setting

Load current can be set to stop the motor at the desired level when overload occurs. When the motor current exceeds the preset CURRENT value (at the same time, overload time continues to exceed the preset SHOCK TIME), the Shock Relay activates and stops the motor.

START TIME setting

When the motor starts there is a possibility that the motor current will exceed the set current value. To prevent the Shock Relay from tripping due to the spike in start current, start time is set a little bit longer than the period of motor start up to ignore the spike.

TEST function

Shock Relay operation can be tested stand-alone or during motor operation.

(When testing the Shock Relay, continue to press and hold the TEST button longer than the set START TIME or SHOCK TIME, whichever is longer.)

SHOCK TIME setting

Shock time is the amount of time set until the Shock Relay will activate when overload occurs. Within the set time, the Shock Relay will not activate, even if it is overloaded.

Operating Mode

Outline dimensions

Basic connection diagram

Single-phase reference connection diagram

1. Set the transformer depending on the voltage of the Shock Relay and MC. Set the insulation transformer if there is a high-harmonic noise generator such as an inverter

- 2. The TSBSA contact output 95-98 are 'open" during normal state (95-96 are 'closed"), when tripping 95-98 are "closed" (95-96 are "open"). Coil capacity of the electromagnetic contactor MC which output contact opens and closes should be less than 200VA when throwing, and less than 20VA when holding.
- 3.1 phase of the motor is passed through the Shock Relay's CT in the same direction.

For when the split-phase or condensor start, connect the CT to the phase of the main coil side

Number of wire(s) that pass through the CT hole

Depending on motor capacity, use the chart on the right to select the applicable Shock Relay model and number of wire(s) to pass through the CT hole.

In order to increase the current setting accuracy, the number of wires that pass through the CT hole is 2 times or more for small motor currents.

When the motor load factor is low, increase the number of wires that pass through the CT hole as necessary.

Furthermore, when the number of the wires that pass through the CT hole is more than 2, it is necessary to convert the current scale value of current volume.

(Ex.) When a wire passes two times through the CT, the value on the current scale should be at half value.

A	C200V class mot	or	AC400V class motor			
Capacity (kW)	Shock Relay Model No.	No. of wires that pass through the CT hole	Capacity (kW)	Shock Relay Model No.	No. of wires that pass through the CT hole	
0.1	TSBSA05	4	—	_	—	
0.2	TSBSA05	3	0.2	TSBSA05	4	
0.4	TSBSA05	2	0.4	TSBSA05	3	
0.75	TSBSA05	1	0.75	TSBSA05	2	
1.5	TSBSA10	1	1.5	TSBSA05	1	
2.2	TSBSA10	1	2.2	TSBSA05	1	
3.7	TSBSA30	1	3.7	TSBSA10	1	
5.5	TSBSA30	1	5.5	TSBSA30	1	
7.5	TSBSA60	1	7.5	TSBSA30	1	
11	TSBSA60	1	11	TSBSA30	1	
_		_	15	TSBSA60	1	
_		_	18.5	TSBSA60	1	
		—	22	TSBSA60	1	

Shock Relay

Shock Relay SU Series

Features

Under-load Detection Type

Once the motor current falls below the preset level, it can detect an under-load and send a signal to stop the motor.

Compact all-in-one CT (Current Transformer)

Includes Test and Reset buttons

DIN rail (35mm) mountable

Can also be used with a single phase motor

Standard specifications

	Model No.	TSBSU05-2	TSBSU30-2	TSBSU60-2			
	Current setting range *1,*2	0.5 to 5A	3 to 30A	5 to 60A			
:	Shock Time setting range *1	0.2 to 30s					
	Current setting accuracy	±10% (full scale)					
Contro	l power supply voltage (A1 – A2)		AC 200 to 240V±10% 50/60Hz				
M	aximum motor circuit voltage		AC 600V 50/60Hz *3				
	Current detection system		2 phase CT system				
Display	MON lamp	Norn	is on				
Dispidy	UC lamp	Detection of under current: UC lamp (red) is on					
	Contact arrangement		1c				
	Contact rating		3A AC250V cos ϕ =1				
	Recommended amperes (in case of frequent operation)		0.2A and below AC250V $\cos\!\phi{=}0.4$				
Output relay	Minimum application load *4	DC10V, 10mA					
	Operation	Relay is excited when tripping					
	Self-holding	Yes (refer to the diagram shown in the next page)					
	Life	100,000 times at contact rating load					
	Reset method	RESET button: ON or Power source: off					
	Ambient temperature	-20 to 60°C					
	Storage temperature	-30 to 70°C					
Work environment	Humidity	45 to 85%RH; no condensation					
	Altitude	2000m and below					
	Atmosphere	No corrosive gas nor dust; Pollution degree 3 and below; in the control box					
	Vibration	5.9m/s ² and below					
Insulation resistance	Between case and circuit		10M Ω and above (DC500V megger)				
Withstand	Between case and circuit		AC2000V 60Hz 1 min.				
voltage	Between contacts		AC1000V 60Hz 1 min.				
tonage	Between circuits		AC2000V 60Hz 1 min.				
Materials	Case		Polycarbonate, UL94V0				
	Cover for terminals		Nylon 6				
	Power consumption		2VA and below				
	Mounting		35mm DIN rail or attached bracket				
Dimensions	Main unit (including CT)		Length 62 x width 54 x height 66mm				
Mass	Main unit (including CT)		0.2kg				

*1. Current and Shock Time setting ranges are those which can be set, but do not show the upper or lower limits of the setting volume.

*2.In the case that the current, at normal state, exceeds the setting range, each model can allow up to 100A respectively.

*3.In the case of an inverter drive, there is a possibility of malfunction due to the distortion of the current waveform. If the frequency is within the range of 30 to 60Hz, it can be used because the influence is minor. *4.Be sure to input minute electric currents through the relay when inputting an output relay contact directly into the PLC (Programmable logic controller), because there is a risk of contact failure due to minute electric current.

Part Names and Functions

CT (Current Transformer)	MON Monitor lamp Normal monitoring state: on
Shock Time setting volume SHOCK TIME	Tripping: off UC Under-load detection Once the motor current falls below the preset level; on
Test button TEST Operation check of tripping It operates after pushing Shock Time setting and longer continuously.	CURRENT Current setting volum Current setting volume RESET Reset button
	Return back the tripped relay

Operating mode

If necessary, set transformer (1r) depending on the voltage on the Shock Relay and electromagnetic contactor (MC). Install an isolating transformer if there is any harmonic noise generating during a voltage on priority generating

output relay of Shock Relay is; Throw: less than 200VA, Hold: less than 20VA

contactor of the auxiliary relay.

device, such as an inverter.

Outline dimensions

Self-holding diagram for reference

Basic connection diagram

Model No.

Number of wire(s) that pass through the CT (Current Transformer) hole

Pass the motor wire(s) through the CT hole the number of times referenced in the chart below. These numbers are rough indication of when the motor load factor is 80 to 100%. In case the motor load factor is low, increase the number of wires that pass through the CT hole as necessary to improve the setting accuracy. In case the motor is not listed below (small capacity, single phase, different voltage, etc.), select the model and number of wire(s) passing through the CT hole depending on the setting current.

AC 200V class 3 phase motor				AC 400V class 3 phase motor	
Capacity (kW)	Applicable Shock Relay Model No.	Number of wires that pass through the CT hole	Capacity (kW)	Applicable Shock Relay Model No.	Number of wires that pass through the CT hole
0.1	TSBSU05-2	4			_
0.2	TSBSU05-2	3	0.2	TSBSU05-2	4
0.4	TSBSU05-2	2	0.4	TSBSU05-2	3
0.75	TSBSU05-2	1	0.75	TSBSU05-2	2
1.5	TSBSU30-2	3	1.5	TSBSU05-2	1
2.2	TSBSU30-2	2	2.2	TSBSU05-2	1
3.7	TSBSU30-2	1	3.7	TSBSU30-2	3
5.5	TSBSU30-2	1	5.5	TSBSU30-2	2
7.5	TSBSU60-2	1	7.5	TSBSU30-2	1
11	TSBSU60-2	1	11	TSBSU30-2	1
		—	15	TSBSU60-2	1
		_	18.5	TSBSU60-2	1
		_	22	TSBSU60-2	1

Note 1) In case the number of the wires that pass through the CT hole is more than 2 times, it is necessary to convert the current scale value of CURRENT volume. (Ex.) When a wire passes two times through the CT, the value on the CURRENT scale should be at half value. 2) In case the motor capacity exceeds the above motor capacity, use the external CT.

Shock Relay

Shock Relay 50 Series

Features

- 1. Economically priced
- 2. Automatic reset
- 3. Additional specifications available

Standard specifications

Model TSB50-COM Function 200V class 0.2 to 3.7kW*1 Motor 0.2 to 3.7kW 400V class -10°C to 50°C Commor Ambient temperature 45 to 85%RH: no condensation Ambient humidity Vibration Work environment Less than 5.9m/s² Altitude Less than 1000m Atmosphere No corrosive gas, dust Unit Model No TSB50 50 to 130% (100%=5mA) Load current (current setting range)*3 $\pm 10\%$ (full-scale) Current setting accuracy Start time Fixed at 3s Time setting range Shock time 0.3 to 3s AC100/110V or AC200/220V 50/60Hz ±10% Control power supply voltage Maximum motor circuit voltage AC600V, 50/60Hz Current detecting system Single-phase CT system , Self-holding No self-holding (automatic return) Main Unit Normal operation Output relay is not excited Output relay Abnormal case Output relay is excited Contact capacity 1s contact, AC250V 0.1A (inductive load $\cos\phi=0.4$) Minimum applicable load*2 DC10V, 10mA 10,000,000 times Mechanical Output relay life span Electrical 100,000 times Not available Test functions AC1500V, 60Hz, 1 minute (power supply circuit and contact circuit) AC500V, 60Hz, 1 minute Space between circuit and housing Withstand voltage Contact spacing AC1500V, 60Hz, 1 minute (power supply circuit and contact circuit) Circuit spacing 0.3kg (not including external CT) Mass Electricity consumption 0.5VA TSB COM Attached External CT \mathbf{b} 0.75A, 1.5A, 1.75A, 2.0A, 2.5A, 3.3A Rated primary current <u>4.0A, 5.3A, 7.0A, 9.0A, 10.0A, 16.0A</u> 5mA External Rated secondary current Rated load 0.5VA 0.5kg Mass

Notes:

1. If TSBCOM-A (small capacity type CT) is used, it can be used for less than 0.1kW motors.

Shock time:

3

0.5-0.3

SHOC

. 62

Set range 0.3 to 3s

2. When directly inputting output relay contact into the programmable controller (PLC), be aware that a minute electric current can cause contact failure.

As for the input to PLC, it is recommended to drive the relay coil for minute current by relay signal of Shock Relay at first, then input this relay contact to PLC.

3. Current and time setting ranges can be set within the warranty range, but not the upper or lower level of setting volume.

Part Names and Functions

\$ B

SHOCK RELAY

(%) 130 LOAD CURRENT

TYPE TSB50

INPUT

Load current setting: Set range motor rated current,

50% to 130%

Operating Mode

Power indicator lamp: Lamp lights when operating normally, and turns off during Shock Relay activation

Outline dimensions

Common type CT (current transformer) TSB COM/TSB COM-A 84.5 73

Model No.

Note) Use main unit with CT as a set.

CT (current transformer) Selection Notes

The load current meter of the Shock Relay shows 100% at the time of the motor rated current value in the chart.

When the actual motor rated current value is not on the chart, use a CT on which the load current meter shows 80% to 100% range when rated current flows.

- When the Shock Belay is not connected, short-circuit the CT's secondary side. 3. Coil capacity of the electromagnetic contactor MC which output contact opens and closes should be less than 200VA when throwing, and less than 20VA when holding.

Common CT (current transformer)

- \cdot TSB COM (standard type) can be used with a 0.2 to 3.7kW motor.
- · TSB COM-A (small capacity type) can be used with a 0.1kW and smaller motor.

TSB COM (standard type)

	Motor voltage AC200/220V		Motor voltage AC400/440V			
Motor	Motor rated Connectine		g terminal	Motor rated	Connecting terminal	
(KVV)	current (A)	Motor side	Shock Relay side	current (A)	Motor side	Shock Relay side
0.2	1.75	K-L ₂	k-l_1	0.75	K-L ₂	$\ell_1 - \ell_2$
0.4	2.5	K-L ₂	$k - \ell_2$	1.5	K-L ₂	$\ell_2 - \ell_3$
0.75	4.0	K-L ₂	$k - \ell_3$	2.0	L ₁ -L ₂	$\ell_2 - \ell_3$
1.5	7.0	K-L	k-l,	3.3	L ₁ -L ₂	$k - \ell_2$
2.2	10.0	K-L	$k - \ell_2$	5.3	L ₁ -L ₂	$k - \ell_3$
3.7	16.0	K-L	k-l ₃	9.0	K-L	$\ell_1 - \ell_3$
Note:						

Common type CT, motor	side L1-L2; Shock	Relay side $\ell_1 - \ell_2$	combination,	1A output CT	can be combined
TSB COM-	Δ (small (canacity	tvne)		

Motor rated	Connecting terminal			
current (A)	Motor side	Shock Relay side		
0.15	K-L ₂	k-l,		
0.25	K-L ₂	$k - \ell_2$		
0.4	K-L ₂	$k - \ell_3$		
0.6	K-L	$k - \ell_1$		
1.0	K-L	$k - \ell_2$		
1.6	K-L	$k - \ell_3$		

Shock Relay

50 Series

Additional specifications chart

Additional specs.	Subtropical specifications	Control power supply voltage modification	Start time modification	Shock time modification
Model	S	V	ТІ	T2
TSB50	O	O	O	O

Notes:

1. Refer to page 112 for detailed specifications.

2. Specify operational power source voltage for the Shock Relay in the case of additional specification V.

3. Specify required start time and shock time in the case of additional specifications T1 and T2.

O: Multiple specifications available

Note: Select by current value

Control Devices

Torque Keeper

Features

The friction facings of the slipping clutch and brake are made with special fine chemical fibers.

Long life

Special fine chemicals are used for friction facings, so much longer life can be expected when compared to other types of brake lining.

Slipping torque stability

Torque fluctuation is very small, so stable torque can be transmitted.

Constant torque repeatability

Even with high frequent repeated slippage, stable torque is transmitted consistently.

Light weight

Due to the aluminum AF flange, the Torque Keeper is light in weight.

Compact

Its special design makes for significant space savings. The Torque Keeper is more compact than other braking devices.

Wide torque range

Each size has a wide torque range.

Easy torque setting

Torque indicators make torque setting easy.

Ease of operation

Operation is easy due to the easy to use adjusting nut.

Greasing unnecessary

Grease and cooling are not needed.

Quick finished bore delivery

Finished bores can be made for quick delivery. (Refer to page 159 for details)

Torque Keeper

Standard brake

Compared to our ordinary products

Intermittent slip

SAFCON

Long life/ Stable/ Easy to operate!

Our brakes have embarked on a new era of the fine chemical fiber. By using these fine chemical fibers, the TSUBAKI Torque Keeper can achieve a longer product life than that of the conventional type of brake lining. This brand new type of Torque Keeper brake has been designed with an abrasion resistance, the use of a torque indicator, weight savings and other aspects that make it easy to use. For the driving of each conveyor's accumulation and brakes for automatic machineries as well as others, we recommend TSUBAKI Torque Keeper for all industrial equipment brake mechanisms.

Purpose and Machine Type

Applications

Chain Conveyor

When the stop bar contacts the stopper, the Torque Keeper slips and the conveyor stops.

When the stopper is unset, the Torque Keeper connects and the conveyor resumes operation.

-Braking-

Turn Table for Parking System

At the parking station the car is rotated in the exit direction on the turn table. When the turn table comes to the correct position, it will be stopped by the stopper. The slipping of the Torque Keeper protects the drive unit from damage.

-Dragging—

When the roller chain is moving, if the material contacts the stopper, the nearby Torque Keeper slips and the material will be stopped. After releasing the stopper, the Torque Keeper will be connected and the material will continue moving.

The gear motor winds the film, paper or sand paper through the Torque Keeper. In this case, the Torque Keeper is slipping under low rpm, so it can apply stable tension.

I orque Keep TFK Serie

TFK20.25.35

	Setting torque range	Rough	Min.	Max.								Dimens	ions						Wajaht								
Model No.	N·m {kgf·m}	bore dia.	bore dia.	bore dia.	А	В	С	F (h7)	G	н	I PCD	J-K Nodia.	L	И	0	Р	Adjusting nut dia.×pitch	Set screw	kg								
TFK20-1L	0.59 to 1.18 {0.06 to 0.12}																										
TFK20-1	1.76 to 5.88 0.18 to 0.6	7	7	7	9	14	37	13.3	7	84	50	24	70	4-M6	5	38	5	2	M24×1.0	M5 x 8	0.56						
TFK20-2	3.92 to 11.8 {0.4 to 1.2}																										
TFK25-1L	1.76 to 4.12 {0.18 to 0.42}	10	10	10																							
TFK25-1	3.92 to 16.7 {0.4 to 1.7}				14	22	48	16.8	8	96	65	35	84	4-M6	6 52	52	5 2	2	M35×1.5	M5 x 8	0.76						
TFK25-2	7.84 to 32.3 {0.8 to 3.3}																										
TFK35-1L	5.88 to 11.8 {0.6 to 1.2}																										
TFK35-1	11.8 to 44.1 1.2 to 4.5	17	19	25	62	19.8	8	120	89	42	108	4-M6	7	65	6	2.5	M42×1.5	M6 x 12	1.5								
TFK35-2	20.6 to 89.2 {2.1 to 9.1}																										

Note: 1. All rough bore types are in stock. 2. An M5 lock screw is included.

3. The weight are those of a product with the maximum shaft hole diameter.

Installation

H7 or H8.

1. When installing the belt-pulley, sprockets etc, fix the outside diameter (dimension F) of the AF-flange and spigot facing with a bolt tightly. (Example 1) The sprocket minimum number of teeth to be shown is on page 148.

The recommended tolerance of the spigot facing is

2. When installing the torque arm, fix it to the AF flange with bolts tightly.

Also, the tip of the torque arm should be supported in the rotational direction only.

There should be sufficient free movement for axial direction. (Example 2)

TFK50.70

																-	-
	Sotting torque range	Rough-	Min.	Max. bore dia.	Dimensions										Weight		
Model No.	N·m {kgf·m}	bore dia.	bore dia.		А	В	С	F (h7)	G	Н	I PCD	J-K Nodia.	L	Adjusting nut dia.×pitch	Adjusting bolt dia. X pitch	Set screw	kg
TFK50-1L	11.8 to 29.4 {1.2 to 3.0}										150	4-M8	9	M65×1.5	M8 × 1	M8 x 20	
TFK50-1	28.4 to 125 2.9 to 12.8	20	22	42	76	22.8	12	166	127	65							4.0
TFK50-2	52.9 to 252 5.4 to 25.7																
TFK70-1L	29.4 to 70.6 3.0 to 7.2						12	216	178	95	200	6-M8	10	M95×1.5	M10×1.25	M10 x 20	
TFK70-1 TFK70-2	69.6 to 341 {7.1 to 34.8}	30	32	64	98	24.8											9.4
	134 to 650 {13.7 to 66.3}																

Note: 1. All rough bore types are in stock. 2. An M5 lock screw is included.

3. The weight is that of one with the maximum bore diameter.

Minimum number of sprocket teeth

Madal Na	эргоскег									
Model.INO	RS35	RS40	RS50	RS60	RS80	RS100	RS120			
TFK20	32	25								
TFK25	35	28	23	20	16					
TFK35		△ 33 (34)	28	24	19	16	14			
TFK50		45	△ 37 (38)	△ 31 (32)	24	20	18			
TFK70			△ 47 (48)	△ 39 (40)	△ 31 (32)	25	22			

Note: 1.The roller chain which does not require lubricating oil is recommended.

2. \triangle denotes non-standard A-type sprocket needs a space. In case of using standard sprockets, please use the sprocket in ().

Model No. TFK35-1-25J-2.5

Size

No. of disk springs

1L…weak spring

Set torque (Unit: kgf·m, No symbol if there is no torque setting)
-Keyway type

(J: New JIS normal type, E: Old JIS 2nd grade , No symbol: special keyway)

Bore diameter _____ (No symbol if there is no finished bore)

Bore Finishing

When bore finishing, chuck the outside diameter of the hub as per the following instructions and align the centering. If the centering is bad, there is a possibility of not stable slipping torque due to abnormal run out of friction facing.

The finished bore Torque Keeper TFK

Finished bore products can be made for quick delivery

Finished bore and keyway

The finished bores of TFK20 to TFK70 have been standardized

Finished bore sizes chart

	Unit : mm
Torque Keeper Model No.	Finished bore size
TFK20-1L	
TFK20-1	9,10,11,12,14
TFK20-2	
TFK25-1L	
TFK25-1	14,15,16,17,18,19,20,22
TFK25-2	
TFK35-1L	
TFK35-1	19,20,22,24,25
TFK35-2	
TFK50-1L	
TFK50-1	22,24,25,28,29,30,32,33, 35,36,38,40,42
TFK50-2	
TFK70-1L	
TFK70-1	48 50 52 55 56 57 60 63
TFK70-2	
Delivery	ExJapan 4weeks by sea

Recommended dimensions for drive member processing When manufacturing a drive member, refer to the drawing below.

Sarias norma	Recommended sprocket finishing dimensions									
Series nume	A	В	С	D (H7)	E	F				
TFK20	70	4	6.6	84	52	*3				
TFK25	84	4	6.6	96	68	*3				
TFK35	108	4	6.6	120	92	4				
TFK50	150	4	9.0	166	130	5				
TFK70	200	6	9.0	216	182	5				

*F = 2 when using RS35.

Model No.

TFK35 - 1 - 25J Size J No. of disk springs J 1...1pc 2...2pcs 1L...weak spring

New JIS keyway normal type

Shaft bore diameter and keyway specifications

- \cdot Shaft bore diameter tolerance is H7
- \cdot The keyway is new JIS (JIS B 1301-1996) "normal type"
- \cdot Set screws come delivered with the product

Chamfer and finish

Shaft bore diameter	Chamfering size
ϕ 25 and less	C0.5
ϕ 50 and less	C1
Above ϕ 51	C1.5

Selection

When using the Torque Keeper with a human transport device or a lifting device, install a suitable protection device on that equipment for safety purposes.

Otherwise an accident resulting in death, serious injury or damage to the equipment may occur due to a falling accident.

1. Decide the conditions from the table below in accordance with your application (see page 145). Determine the size from the T-N curve graphs on the next page.

Application	Conditions	Size
Accumulation	Determine the following for the Torque Keeper of each conveyor: ① Slip torque ② Slip rpm ③ Slip time (conveyor stop time) ④ Connection time (conveyor drive time) ⑤ Operating time per day	Determine a size for which the slip torque and rpm is within the allowable range (below the curve) on the T-N curve graph. When the slip time is longer than the connection time, and the operating time per day exceeds eight hours, we recommend that it be operated within the material area of the T-N curve graph.
Braking	 Determine the following for the Torque Keeper of each machine: Brake torque Rpm Slip time (brake operating time) Connection time (time when brake not operated) Operating time per day Note: Items (3) and (4) are not necessary in case of continual slipping. 	Determine a size for which the brake torque and rpm is within the allowable range (below the curve) on the T-N curve graph. When the slip time is longer than the connection time, and the operating time per day exceeds eight hours, we recommend that it be operated within the area of the T-N curve graph.
Dragging	Determine the following for the Torque Keeper of each machine: ① Slip torque ② Slip rpm ③ Slip time ④ Connection time ⑤ Operating time per day	Determine a size for which the slip torque and rpm is within the allowable range (below the curve) on the T-N curve graph. When the slip time is longer than the connection time, and the operating time per day exceeds eight hours, we recommend that it be operated within the material area of the T-N curve graph.

2. Verify that the shaft bore range of the chosen Torque Keeper conforms with the shaft diameter to be installed.

3. Setting the slip torque:

Each Torque Keeper is set at a value that is 50% of the maximum set torque range (see pages 147, 148). The torque curve will be included with the unit when it is delivered. This 50% torque is called the "zero point" and it is the basis for setting the slip torque.

For details, see the section, "Handling Part 2" on page 152.

Points of caution regarding selection

- 1. Do not allow water or oil to get onto the friction surface. This will cause the torque to drop and unstable slip torque will result.
- 2. The T-N curve graph is intended for use when the ambient temperature is below 40° C . Please contact TEM when the ambient temperature is higher than this.
- 3. Please contact TEM when the slip torque for the shaft diameter to be used is smaller than the setting torque range of the Torque Keeper.
- 4. Reversing the direction of rotation will cause backlash. Torque Keeper cannot be used with machines that do not allow backlash.

T-N Curve { } for reference

Handling Part 1

- 1. All Torque Keeper units are shipped with rough bores.
- Finish a shaft bore in the hub after disassembly. Refer to page 148 regarding shaft bore finish.
- 2. Be careful not to mix up parts when disassembling two or more Torque Keepers. When assembling, be sure to use the original parts. If parts are mixed up, the slip torque will not match the torque curve delivered with the unit.

Note: The T-N curve graph is based on the allowable temperature range of the Torque Keeper. If a more stable slipping torque is necessary, we recommend that it be operated within the area. However, be aware that when the speed is 30 r/min

or less, a stick-slip phenomenon may occur, which will cause unstable torque. A stick-slip phenomenon is a phenomenon in which a friction surface slips and stops repeatedly.

3. Be sure that any toothed belts or roller chains, etc., are not over-tensioned when using the Torque Keeper. Unstable slip torque will result if more than the required tension is applied.

Handling Part 2

Each Torque Keeper is set at a value that is 50% of the maximum set torque range (see pages 147, 148). The torque curve will be included with the unit when it is delivered. This 50% torque is called the "zero point" and it is the basis for setting the slip torque.

To set the slip torque of TFK 20, 25 and 35, tighten the adjustment nut with a hook spanner wrench. To set the slip torque of TFK 50 and 70, tighten the three adjustment bolts with a wrench. Refer to page 153 to determine the zero point.

Setting the slip torque

TFK 20, 25 and 35

- (1)When the required slip torque is over the zero point, tighten the adjustment nut to the angle required in accordance with the attached torque curve. This operation is facilitated by the torque indicator (which shows the angle) and match marks.
- (2)When the required slip torque is below the zero point, loosen the adjustment nut beyond the point required and then tighten it to the desired angle, in accordance with the attached torque curve.

Example: Set to a slip torque -30° from the zero point.

- (1) Loosen the adjustment nut to -60° from the zero point.
- (2) Tighten the adjustment nut from -60° to -30°

TFK 50 and 70

- (1)When the required slip torque is over the zero point, tighten the three adjustment bolts to the angle required in accordance with the attached torque curve. This operation is facilitated by the torque indicator (which shows the angle) and match marks.
- (2)When the required slip torque is below the zero point, loosen the three adjustment bolts beyond the point required and then tighten them to the desired angle, in accordance with the attached torque curve.

Example: Set to a slip torque -60° from the zero point.

- (1) Loosen the adjustment bolts to -90° from the zero point.
- (2) Tighten the adjustment bolts from -90° to -60°

(Caution) When initially setting the Torque Keeper or when changing the setting during operation, we recommend running the machine for two or three minutes to run in before normal operation. This will allow you to obtain a more stable slip torque. Break-in as follows in accordance with the slip torque setting.

(1)When the slip torque is below the zero point:

- ① Run in the machine at zero point torque for two to three minutes.
- ⁽²⁾ Set the slip torque as explained above and then enter normal operation.

TFK20·25·35 Torque indicator

(2)When the slip torque is above the zero point:

- ① Set the slip torque as explained above.
- (2) Run in the machine for two to three minutes.
- ③ Return the adjustment nut or bolts to the zero point.
- ④ Set the slip torque again and then begin normal operation.

Torque Curve

Torque Curve

Standard Spring Type { } for reference

Note: 1. Indicator 0 on torque curve shows 50% of maximum torque.

 Each torque curve is an example. Refer to the attached torque curve of the actual unit.

Finding the zero point

After finishing the shaft bore and re-assembling the unit, determine the zero point as explained below:

TFK 20, 25 and 35

- During re-assembly, match the "0" on the torque indicator with the position of the set screw on the hub (part [®]) on page 147). (Do not allow it to be positioned 180° in the opposite direction.)
- 2. Hand-tighten the adjustment nut and then use a hook spanner wrench to further tighten it until the match mark reaches the "0" position on the torque indicator.

TFK 50 and 70

- 1. Tighten the adjustment nut and align it with the match mark on the hub.
- 2. Hand-tighten the bolts and then use a wrench to further tighten them until the "0"position on the indicators align with the match marks.

Lock screw/tightening torque

Hexagon socket head screw	Tightening torque N·m{kgf·cm}
M5	3.8 {38.7}
M8	16 {163}

Precautions:

When re-tightening the lock screws that are once removed, make sure to take the following precautions:

- Confirm that the plug tip has not been removed. If a lock screw is used with a tipless plug, the hub's thread may be damaged or the hub's pocket may get jammed.
- 2. Confirm that the plug's tip has not been heavily damaged. If a lock screw is used with a heavily damaged plug tip, the hub's thread may be damaged.
- *If 1. or 2. is found to be the case, exchange the damaged parts with new ones.

Special Type Torque Keeper

MEMO

sper ies
que Ke

MINI-KEEPER

Features

Highly accurate, light and super-compact slipping clutch and brake

The TSUBAKI MINI-KEEPER is a super-compact slipping clutch and brake, constructed from fine chemicals and engineering plastic. With the MINI-KEEPER we have achieved supreme levels of lightness, compactness, and accuracy among similar devices. The MINI-KEEPER is ideal for braking, accumulating, and dragging applications in OA equipment and precision machinery.

Applications

The MINI-KEEPER slips and maintains constant tension on the tape (or film, etc.). It is ideal for braking in the winding and unwinding.

The MINI-KEEPER is installed on the tension controller in previous stage of the winding roll. It provides stable slip torque and maintains stable tension on the thread.

<Other potential applications>

Thermal printer Paper feeder Plotter Copier Textile machine Wire cutter Film processing equipment Accumulation conveyor

Automatic packaging machine Coil winding machine Labeler Barcode printer Electronic device manufacturing equipment Various robots Ribbon printer Facsimile

AINI-KEEPE MK Series

Dimensions

Torque Curves

MK12

Selection

When using the MINI-KEEPER with a human transport device or a lifting device, install a suitable protection device on that equipment for safety purposes. Otherwise an accident resulting in death, serious injury or damage to the equipment may occur due to human disaster and an accidental falling.

- Choose set torque and slip rpm from the part of the T-N curve graphs below.
- * The T-N curve graph displays the limit value reached by heat generation during continual slip. When the slip time per one operation is short and the interval is long, it is possible to use the MINI-KEEPER in excess of the T-N value. In this case, please contact TEM for a consultation.
- * Contact TEM for non-standard specifications.
- * However, be aware that when the speed is 30 r/min or less, a stick-slip phenomenon may occur, which will cause unstable torque. A stick-slip phenomenon is a phenomenon in which a friction surface slips and stops repeatedly.

T-N Curve

The T-N curve is applied when the ambient temperature is 40° C or lower. Contact us for other cases.

Handling

Installation onto a shaft

- 1. The MINI-KEEPER's shaft bore is already finished. We recommend a tolerance for the installation shaft dia. of h7 or h8.
- 2. Use the pin pocket (groove) on the end face of the hub to connect the MINI-KEEPER to the shaft. Insert the pin into the shaft, and then set them to the pin pocket as shown in the diagram below. The clearance should be about 0.5mm.

Installation onto a driven member

1. Use a jaw at flange to install the MINI-KEEPER onto a driven member (gear, pulley, etc.).

Cut a groove into the end face of the driven member, and slide the jaw into it. At this time, be sure to allow a clearance so that thrust and radial loads do not act on the flange end face including the jaw. The clearance should be about 0.5mm.

Torque setting

1. All MINI-KEEPERs are set at the zero point (minimum torque) before shipment. When in this condition, the scale above the periphery of the adjustment nut is as shown in the diagram below. Verify this.

2. Set the torque by tightening the adjustment nut. Refer to the torque curve on page 157. Use the torque indicator as a guide for the torque setting illustrated below.

3. After setting the torque, fix the adjustment nut to stop it from rotating. Do this by inserting the accessory clip for anti-rotating between the adjustment nut and the stop collar as shown below. Make sure to verify the protruding portion of the clip for anti-rotating is inserted at the hub groove (both sides). Anti-rotation is made by the clip for antirotating hitting the stop button (convex portion) of the adjustment nut.

- Note: 1. If oil or water gets into the friction facings, it will result in abnormal torque and unstable slipping torque.
 - 2. The standard highest operating ambient temperature for the MINI-KEEPER is 40°C If this will be exceeded, contact TEM.

Installation example

Control Devices

Electrical

Shock Monitor

Fea	atures	- p161	
Мо	del reference chart	- p162	
Ap and	plication examples d basic operations of each t	type	
	Shock Monitor TSM4000Type	p163	
	Shock Monitor TSM4000 Type/TSM4000H1 Type	p169	Safety Devices
	Shock Monitor TSM4000H2 Type	- p170	
	Shock Monitor TSM4000M1 Type	- p171	
	Shock Monitor TSM4000M2 Type	p172	
	Shock Monitor TSM4000C1 Type	p173	
Exte	ernal connection/parameter settings/	p174 t	to p178

Shock Monitor

(Industrial Property Right Patent No. 2796775 and others)

Features

The Shock Monitor is a power monitoring safety and control device that can detect even the minimal variations in load by monitoring input power.

1. Ideal for monitoring light loads

For a standard motor there are only minute current variations in the light load zone. For load monitoring of the device used in the light load zone, monitoring electric power variations in the proportional load is ideal.

2. Almost completely unaffected by source voltage variation

Even with a constant load, if the power supply fluctuates then current will fluctuate largely, thus making accurate load detection impossible. While the Shock Monitor is monitoring machine power it is almost completely unaffected by voltage fluctuation, so stable load detection is possible.

3. Can be used with a wide range of frequencies (5-120Hz)

Can be used with an inverter and a servomotor drive. (The inverter's electronic thermal is for burnout protection. Not suitable for device protection.)

^t If the power source frequency exceeds 120Hz such as servo motor for machine tool main spindle, consult TEM.

4. Quick response

Input power is measured every 0.02s. Right after trouble happens, the signal is output in a minimum of 0.05s.

5. Load condition recording

The direct current voltage that is proportionate to motor input power is output, so the load condition can be recorded on the recorder.

TSM4000 Series
converted into 0 to 10V (basic type)
converted into 0 to 5V (optional)
converted into 4 to 20mA (optional)

6. CE compliancy possible

For details, contact TEM.

Example: Power and current variation for load variation

(1)The power variation that is proportional to load variation is emerged.

(2)From the chart below we can see that with a load variation of about 10%, there is almost no change in current, while power makes remarkable change.

Model reference chart

	Model No.		l No.	TSM4000	TSM4000H1	TSM4000H2	TSM4000M1	TSM4000M2	TSM4000C1			
Item	۱ <u> </u>			*1 *2 Basic type	*2 Economy type	following type	detection type	Integral power type	sequencer type			
Apr	Jied	Capaci	ity			0.1 to	110kW					
- Ph	"3 Power source voltage		e voltage			AC200/220V,	AC400/440V					
		Frequer	ncy	5 to 120Hz								
Con	trol pow	ver supply vo	oltage	AC90 to 250V50/60Hz, DC90 to 250V Nonpolar								
+	*3 N	Aotor volta	ige	AC250V, MAX								
lnpu	Cu	irrent senso	or	DC2.5V								
	C	ontrol inpu	ut	X1, X2, X3, IH, RST	X1, X2, RST	X1, RST	X1, X2, X3, X4, X5	X1, X2, X3, X4, X5	X1, X2			
	N	o. of conta	act	3c	2c	2c	Зc	Зc	2a, 1b, 1c			
put	Re	elay contac output	ict	DC30\	AC250V, 0.5A (Inductive load $\cos \phi = 0.4$) DC30V, 0.4A (Inductive load) DC110V, 0.2A (Inductive load) Minimum load applicable DC24V, 4mA							
Ō	Outp	out Mech	nanical			10,000,000) activations					
	relay	life Elect	trical			100,000 0	activations					
	Anal	og output i	relay			DC0 t	o 10V					
	Loa	ıd Outp	put 1	High1 - 200 to 200%	HIGH1 5 to 200%	HIGH1 1 to 99%	OUT1 1 to 99%	OUT1 0 to 99%	Overload 5 to 200%			
	setti	ng Outp	put 2	High2 $$ - 200 to 200%	HIGH2 5 to 200%	HIGH2 5 to 200%	OUT2 1 to 99%	OUT2 5 to 200%	No load 5 to 200%			
0	leve	el Outp	put 3	Low - 99 to 99%			OUT3 5 to 200%	OUT3 5 to 200%				
ettin	Start t	ime setting i	range			0.1 to 20.0s			1 to 300s			
0,	Shock time		•			"MIN" or 0	.1 to 10.0s					
	setting range		ge	In case motor power souce trequency is 50Hz and higher, shock time at "MIN" is approximately 50ms.								
	Reponse			Set by number of QUICK (Average no. 1 time), NORMAL (Average no. 5 times), SLOW (.				nes), SLOW (Average	e no. 20 times)			
	*4 lr	nhibit funct	tion	Manual/auto switching	Autoi	nhibit	Manual/auto switching					
_	Relc	ay self-hold	ding		Self-hold/auto	reset selectable	1	Only OUT3 is selectable	Sequencer function			
iction	Switch	ning detection	n level	8 steps	4 steps	None	8 si	eps	None			
Fu	T	est function	n			Relay ou	utput test					
		Peak-hold		When the	e load ratio exceeds the	e pre-set level (or falls l	pelow it), shows the mo	aximum value within sh	nock time.			
		function			Only	when the output is set	as self-hold, it is peak	hold.				
	% Pow	ver display ı	range	- 200 to 200%	200 to 200%							
splay	Volta	ge display r	range			0 to 3	500V					
ä	Curre	ent display r	range			0.01 to	999A					
	Frequency display range					5 to 1	20Hz					
F	Power consumption		on			10VA (Inrush curre	ent 5A within 5ms)					
	Appro	ximate ma	155			1.0)kg					
		temperat	ture		0 to 50°C							
V	Vork	Reative hur	midity			45 to 85% RH; there	e is no condensation					
envii	onment	Altitud	de ant			1000m	and less					
Ambient		here		No corrosive gas, dust								

Note: *1. Basic type can monitor not only positive (plus) torque but also negative (minus) torque.

*2. Basic type and Economy type can monitor power or torque.(Negative torque can not be monitored by the Economy type.)

In case of torque monitoring, torque is calculated by the monitored power, and displayed. In this case, rated torque (100%) is that at 60Hz. In case the frequency is 20Hz and below, errors become larger due to motor efficiency. In this case, use for power monitoring.

*3. In case Shock Monitor is used at AC400/440V, a 400V class resister "TSM4-PR1" is necessary.

*4. This is the function to stop the power monitoring of Shock Monitor. Basic, M1 and M2 types can inhibit manually, and between inhibit input terminal and CM are ON within setting time, or during ON, load ratio "0%" flashing and do not monitor power.

In addition, if the frequency changes 4Hz/1s of motor voltage, monitoring is automatically stopped. (Auto inhibit)

🕂 Warning

When using the Shock Monitor with a human transport device or a lifting device, install a suitable protection device on that equipment for safety purposes.

Otherwise an accident resulting in death, serious injury or damage to the equipment may occur due to a falling accident.

hock Moni SM400

Quickly detects small load changes Shock Monitor TSM4000

Contributes to "visualization" in factories (option)

Combining a commercially available touch panel display and a shock monitor having an optional communication function makes it possible to display the current readout of the shock monitor and a trend graph of the readout on a remote display.

Also, you can change the parameters of the shock monitor through remote touch panel operations.

* For the details of the optional communication function, contact our customer service center listed on the back cover.

Features

Safety Design

The terminal block is equipped with a cover. This structure prevents dust from entering the main unit.

Analog output

A 0 to 10 V analog output is available as a standard feature (also, 0 to 5 V and 4 to 20 mA outputs are available as options), which enables actions and monitoring according to the load.

Environmental Consideration

The backlight automatically turns off, which contributes to the saving of energy. This product does not contain any RoHS restricted substances, so it is environmentally friendly.

Improved Handleability

The panel-mount style is standardized to make connection to the terminal block easy when mounting this product on a panel.

Also, this product can be mounted on DIN rails.

Basic operations of TSM4000

- 1) The TSM4000 compares the load with the preset overload detection level, and presents an external notification of load abnormality when an overload state (or a light load state) continues for a certain period of time (the shock time).
- 2) Two upper limit abnormality signals and one lower limit abnormality signal are available and can be used as prediction signals or motor stop signals.
- 3) To prevent false output due to acceleration, the load detection is canceled for a preset time (the start time) when starting the motor.
- 4) A torque monitoring function (20 to 120 Hz) is available, which is effective when an inverter is used. See Note) *2 on page 162.

Usage examples

In a drilling process using a machine tool, the Shock Monitor reliably detects not only overload but also any breakage of the drill, preventing defective products from being produced during unattended operation.

Additionally, using a model which calculates integral power values enables detection of wear in the drill with high accuracy. Replacing the drill before breakage can prevent yield decreases.

Application examples of the optional communication function

The optionally available communication function enables the combination of the Shock Monitor and a commercially-available touch panel display unit to be used in the following ways:

- <Functions available with the display unit>
- Displaying of electrical power, current, and voltage data in graph form
- Saving of the above data and transferring the data into memory
- Reading/writing of setting values for a specified parameter

<Usage>

- The production process can be monitored using real-time displays of power and current waveforms.
- Checking the waveform of abnormal events is effective in preventive measures or making improvements to guard against device damage.

For details, contact TEM.

Part names and functions

	Liquid crystal display	Displays load ratio, setting value, or parameter data.
TTSUBARI SHOCK MONITOR	LED indicators	Indicates the status where the motor is running and
		the output relay is activated.
NOTOR Lov Highly HTME2	Operation keys	Keys used to toggle the display mode or change parameters.
	Connector CN1 ······	Connects a device to use signals for control input or
		analog output.
	Terminal block for wiring	Terminals for connecting control power supply,
		motor voltage, relay output, current sensor cable, etc.
]	
	Main unit section	
	Socket section	

Option

Current sensor (attachment)

The current sensor brings motor current into the Shock Monitor unit.

Select a model from the chart below depending on the motor capacity and voltage.

	AC 200/2	20V motor	AC 400/4	40V motor
Motor capacity (kW)	Sensor Model No.	Number of wires that pass through the CT hole	Sensor Model No.	Number of wires that pass through the CT hole
0.1	TSM-U010	6	TSM-U010	12
0.2	TSM-U010	3	TSM-U010	6
0.4	TSM-U010	2	TSM-U010	3
0.75	TSM-U050	6	TSM-U010	2
1.5	TSM-U050	3	TSM-U050	6
2.2	TSM-U050	2	TSM-U050	5
3.7	TSM-U050	1	TSM-U050	3
5.5	TSM-U050	1	TSM-U050	2
7.5	TSM-U100	1	TSM-U050	1
11	TSM-U100	1	TSM-U050	1
15	TSM-U150	1	TSM-U100	1
18.5	TSM-U150	1	TSM-U100	1
22	TSM-U200	1	TSM-U100	1
30	TSM-M300	1	TSM-U150	1
37	TSM-M300	1	TSM-U150	1
45	TSM-M400	1	TSM-U200	1
55	TSM-M600	1	TSM-M300	1
75	TSM-M600	1	TSM-M300	1
90	TSM-M800	1	TSM-M400	1
110	TSM-M800	1	TSM-M400	1

400V class resister

It is necessary in case the motor voltage is 400/440V. Please order separately.

Sensor cable

A 1 m length sensor cable (TSM4-S01) comes standard to connect the Shock Monitor and the current sensor. In case a different cable is required, order the cable with the connector below separately.

Model No.	Cable length (L)
TSM4-S01 (attached)	lm
TSM4-S03	3m
TSM4-S05	5m
TSM4-S10	10m
TSM4-S20	20m
TSM4-S30	30m
016	

I/O cable

=

This cable is necessary when you want to perform process changeover from the outside, when resetting the shock monitor, and

TSM4-CXX

Shock Monitor

: Circuit breaker · Fuse Electromagnetic contactor for motor Over current relay

: CR filter START: Start button

STOP : Stop button

Operating electromagnetic coil capacity (magnetic capacity) of the electromagnetic contactor [MC] for motor should be less than 100VA when throwing, and less than 10VA when holding.

Note:

- 1. Select the current sensor from the Current Sensor table based on motor capacity and voltage. Use the specified number of pass through and current direction.
- 2. Make sure to insert the current sensor into the "phase V", and use sensor cable TSM-SXXN to connect with Shock Monitor.
- 3. If using a 400/440V motor, use 400V class resister shown in dashed line.

4. Connect motor voltage terminal of Shock Monitor U[1], V[2], W[3] with the phase of [U], [V], [W] respectively.

5. Use relay for minute electric current for [X1], [X2], [X3], [IH], [RST].

In case of a wrong connection, load can not be detected correctly and the Shock Monitor will not work properly.

Terminal functions

• Termin	Terminal block						F C	High2 Power putput Trapply T
		20	19	18	17	16	15	14 13 12 11
		FG	C-	C-	±15	-15	Ŕ	
		Ē		<u> </u>			Ľ	
						_		
		U	V	W	ß	ŞI		₿ \$ E
		1	2	3	4	5	6	7 8 9 10
		L N VC	lotor oltage nput	, J e	L F	ligh utpu	1 − ut	Low Low Ground
Name	Symbol	11 O	√/ UT	F N	'in Io.	Explanation		
Control power	POWFR	IN			1	Connection of control		ction of control
supply	TOWER			1	2	ро	wer	supply
Ground	E		_	1	0	Gr	oun	d terminal
	- 15	0	UT		6			
Current	+15	0	UT		7			
sensor	C –	I	Ν	1	8	Sensor cable		
	C+	I	N	1	9			
	FG	-		1	20			
Motor	U	I	Ν		1	Motor voltage input terminal		
voltago	V	I	Ν		2			
volidge	W	I	Ν		3			
Laur	b	0	UT		7	Re	lay	contact output
output	α	0	UT		8	wł	when the lower limit	
	С	0	UT		9	OU	tput	is activated
High 1	b	0	UT		4	Re	lay	contact output
output	a	0	UT		5	when the higher limit 1		
oulpui	с	0	UT		6	OU	tput	is activated
High?	с	0	UT	1	3	Re	lay	contact output
autout	a	0	UT		4	wh	ien i	the higher limit 2
oupur	b	OUT		1	5	output is activated		

Connector CN1

Х	1	Х	3	N.	C.	С	М	Ac	out	А	in	V	-	R	3-
	_	2	2		3	4	1	Ę	5	6	6	7	7	8	3
	ç)	1	0	1	1	1	2	1	3	1	4	1	5	
	Х	2	ł	-	R	ST	0	V	0	V	N.	C.	RS	3+	

Note) Connection to pins No. 3 and 14 is prohibited.

Name	Symbol	IN/ OUT	Pin No.	Explanation
D	X1	IN	1	
Process	X2	IN	9	Power process terminal
switch	Х3	IN	2	
Inhibit	IH	IN	10	Inhibit terminal
Common	СМ	IN	4	X1,X2,X3,IH,RST common terminal
Reset	RST	IN	11	Resetting self-hold status

Control input

Analog output

When the model supports the terminal function as standard, the analog output characteristic can be selected with Parameter 21: OUTPUT SELECT.

167

Parameter setting

No.	Parameter	Data	Data when shipment	Contents
1	Parameter	(1)Unlocked	(1)	All parameters can be changed.
	Lock	(2)Locked	(1)	Parameters other than this parameter cannot be changed.
2	Motor Voltage	(1)200-230V	(1)	Motor voltage 3 phase 200V class
		(2)380-460V	(1)	Motor voltage 3 phase 400V class
3	Motor kW	0.1 to 110kW	0.75	Setting motor capacity
4	Start Time	0.1 to 20.0s	3.0s	Setting the start time
5	Process	1 to 8	1	Number of process
6	High2 Level	-200 to -5%	100%	Higher limit 2 level of process 1
	Process[1]	5 to 200%		
7	Shock Time H2	MIN,0.1 to 10s	1.0s	Higher limit 2 shock time
8	Output Relay H2	(1)Self-Hold	(1)	Selecting the higher limit 2
		(2)Auto-Reset	(1)	output operation mode.
9	High1 Level	-200 to -5%	80%	Higher limit 1 level of process 1
	Process[1]	5 to 200%		
10	Shock Time H1	MIN,0.1 to 10s	1.0s	Higher limit 1 shock time
11	Output Relay H1	(1)Self-Hold	(2)	Selecting the higher limit 1
		(2)Auto-Reset	(2)	output operation mode.
12	Low Level	-99 to 0 to 99%	0%	Lower limit level of process 1
	Process[1]			
13	Shock Time L	MIN,0.1 to 10s	1.0s	Lower limit shock time
14	Output Relay L	(1)Self-Hold	(1)	Selecting the lower limit output
		(2)Auto-Reset	(1)	operation mode.
15	Motor Efficiency	10 to 100%	100%	Motor efficiency.
16	Response	1 to 50times	5times	Number of moving average sampling operations
17	Inhibit Time	IH,0.1 to 10s	IH	Inhibit time*
18	Auto Inhibit	(1)On	(2)	Setting the auto inhibit function.
		(2)Off	(2)	
19	Power/Torque	(1)Power	(1)	Monitor with motor input power
		(2)Torque	(1)	Monitor with the torque calculated by the power
20	H2Relay Logic	(1)Fail Safe	(2)	Selecting the fail-safe operation.
		(2)Nomal Logic	(2)	
21	Output Select	(1)-200 to 200%	(2)	Selecting the analog output.
		(2)0 to 200%	(2)	
22	LCD Backlight	(1)Always	(1)	Keeping the backlight on at all times.
		(2)2min		Turning the backlight off two minutes after key operation.
23	Trip Test	(1)Motor on/off	(1)	Selecton of test mode during
		(2)Motor off		motor operation

* Inhibit time: Time for which the power detection is temporarily stopped.

LCD contrast adjustment

When the LCD display is illegible, hold down the SET key and press \blacktriangle or \blacktriangledown key to adjust it.

(Note that excessively high contrast will shorten the LCD service life.)

New and unique applications for the Shock Monitor

Various application-specific types based on the "Basic type" of TSM4000!!

Our line-up of Shock Monitors fits perfectly with all kinds of applications.

Application examples and basic operations of each type

1. [Basic type] TSM4000 type ······For general industrial machines [Economy type] TSM4000H1 type

The economy type has fewer functions than the basic type. Refer to the below charts for a comparison of Shock Monitor functions.

Damage prevention

Key point

There is little current variation due to a high gear ratio, making it difficult for the Shock Relay to detect the overload, so a power detecting type Shock Monitor is the best option.

Applications

Assembly conveyor, water and sewage treatment, garbage disposal equipment conveyors, etc.

Overload may be difficult to be detected depending on the characteristics of the machine. So, check your use conditions and contact us if you are considering detecting overloads.

Basic operations of TSM4000H1

Preventive maintenance

<u>Key point</u>

Shock Monitor detects even minute load rise due to the lack of lubrication for the chain. It then sends an alarm signal to operate the automatic lubricator.

Applications

Food processing machines that operate 24 hours a day, etc.

[Features]

- 1) Simplified functions means easy setting. 2) Relay output has two outputs. It can be used as an alarm signal (HIGH1) and an abnormal level output (HIGH2).
- 3) As a set, HIGH1 and HIGH2 can be switched from the external for a maximum of 4 types. It is useful to change the setting depending on the work-piece being carried.
- 4) It comes with an efficient torque monitoring function (20 to 120Hz) for when using the inverter. *Refer to page 172, Note: *2

Comparison on function [Basic model] and Economy model]

Function	Basic model	Economy model
HIGH1	0	0
HIGH2	0	0
LOW	0	×
e monitoring function	0	0
selection of detection level . of process to monitor)	8	4
toring negative torque	0	×
	Function HIGH1 HIGH2 LOW ermonitoring function celection of detection level of process to monitor) oring negative torque	Function Basic model HIGH1 O HIGH2 O LOW O e monitoring function O of process to monitor) 8 oring negative torque O

2.[Load following type] TSM4000H2 Type…For general industrial machines

Protection for equipment which varies in efficiency

The efficiency of the reducer varies together with operating time. As well, even for equipment where the load ratio varies, it is possible to detect abnormal condition due to the load following function.

Applications

Water treatment equipment, etc.

Protection for equipment which periodically varies in load.

rotation, it is possible to detect abnormal conditions due to the load following function.

Applications

Medical equipment, etc.

Basic operations of TSM4000H2

3.[Contact detection type] TSM4000M1 Type····For machine tools (Industrial Property Right Patent No.: 3108798)

Movement

Until the grindstone makes contact with the workpiece the feed speed is high. After the Shock Monitor has detected contact with the work-piece, the TSM4000M1 immediately switches to a low feed speed. (shortening the working time)

Key point

A minute load at an instant when the grindstone contacts with the work-piece is quickly and accurately detected. Consequently, a substantial decrease in the finishing cycle time is realized.

Applications

Metalworking, machine tools, etc.

- Tool and work piece contact detection
 - Rotational balance corrector for auto parts (crank shaft)

Movement

When drilling the hole, if the drill touches the workpiece, it will be detected and the Shock Monitor will immediately output. From there, by keeping feed time constant, the drilled quantity is managed uniformly.

Key point

The Shock Monitor ignores common changes to idling power. Because it can only detect work volume, it can securely judge the moment contact is made with the drill (0.03s).

Applications

Machine tools (drilling machine, grinding machine, etc.)

Note: If the power source frequency exceeds 120Hz, such as a servo motor for a machine tool's main spindle, consult TEM.

Basic operations of TSM4000M1

4. [Integral power type] TSM4000M2 Type ···· For machine tools

By integrating 1 cycle of power from the manufacturing process, tool wear condition and breakage, as well as overload can be detected.

Estimated tool service life

Machine tools, etc.

Machine tools, etc.

Check the product quality

Applications

Inspection equipment etc.

Note: If the power source frequency exceeds 120Hz such as a servo motor for a machine tool main spindle, consult TEM.

Basic operations of TSM4000M2

5. For built-in forward and reverse sequence type: TSM4000C1 Type······For crushers

Crusher blade protection and forward/reverse control

Precisely detects load on crusher blades. When a jam occurs, the machine automatically detects overload \rightarrow the machine stops \rightarrow moves into reverse \rightarrow stops \rightarrow moves forward repeatedly until the machine becomes un-jammed.

Key point

Blade life span increases significantly. The sequence program necessary for forward and reverse movement is built-in, so it is easy to control the crusher.

Applications

Crusher for waste disposal, reducer, screw conveyor, etc.

Basic operations of TSM4000C1

2. Economy type TSM4000H1 ······ For general industrial machinery

14

LCD Backlight

(2)2min

(1)

illumination time

connection

N.C

15

3. Load following type TSM4000H2.....For general industrial machinery

4. Contact detection typeTSM4000M1 ······ For machine tools

illumination time

(1)

b

OUT

15

18 LCD Backlight

(2)2min

5. Integral power typeTSM4000M2...... For machine tools

CB : Circuit breaker F : Fuse MC : Electromagnetic contactor for motor OCR : Over current relay CR1 : CR filter START : Start button STOP : Stop button

Operating electromagnetic coil capacity (magnetic capacity) of the electromagnetic contactor [MC] for motor should be less than 100VA when throwing, and less than 10VA when holding.

Note:

- Select the current sensor from the Current Sensor table based on motor capacity and voltage. Use the specified number of passes through and current direction.
- Make sure to insert the current sensor into the "phase V", and use the sensor cable TSM-SXX to connect with the Shock Monitor.
- If using a 400/440V motor, use the 400V class resister shown in dashed line.
- 4. Connect the motor voltage terminal of the Shock Monitor U[1], V[2], W[3] with the phase of [U], [V], [W] respectively.
- Use relay for minute electric current for [X1], [X2], [X3], [X4], [X5].
- In case of a wrong connection, load can not be detected correctly and the Shock Monitor will not work properly.

Function of terminals

Parameter setting

No.	Parameter	Data	Data when shipment	Contents	
1	Personator Look	(1)Unlocked	(1)	Can change parameter setting	
		(2)Locked	(1)	Can not change parameter setting unless in an unlocked condition	
2	Base Time	0.1 to 25s	2.5	Setting the time for the rated value of integrated power	
3	Integration Time	X5,0.1 to 25s	5.0	Setting the time for power value integration	
4	Motor Voltago	(1)200-230V	(1)	Motor voltage 3 phase 200V class	
4	Wolor volidge	(2)380-460V	(1)	Motor voltage 3 phase 400V class	
		(1)0.1kW (11)15kW			
		(2)0.2kW (12)18.5kW			
		(3)0.4kW (13)22kW			
		(4)0.75kW (14)30kW			
_		(5)1.5kW (15)37kW		С - щіт	
5	Motor kW	(6)2.2kW (16)45kW	0./387	Setting motor capacity	
		(7)3.7kW (17)55kW			
		(8)5.5kW (18)75kW			
		(9)7.5kW (19)90kW			
		(10)11kW (20)110kW			
6	Start Time	0.1 to 20.0s	3.0	Setting the start time	
7	Process	1 to 8	1	Number of process	
8	OUT1 Level	0 to 99%	0	Value of OUT1 integrated power lower limit	
9	OUT2 Level	5 to 200%	80	Value of OUT2 integrated power upper limit	
10	OUT3 Level	5 to 200%	100	Value of OUT3 instantaneous power upper limit	
11	Shock Time	MIN	1.0		
	OUT3	0.1 to 10.0s	1.0	Setting snock time OUT 3	
10	Output Relay	(1)Self-Hold	(1)	Selecting the output	
12	OUT3	(2)Auto-Reset	(1)	operation mode (OUT3)	
		(1)QUICK			
13	Response	(2)NORMAL	(2)	Number of moving average	
		(3)SLOW		operations	
1.4	1 1 · 1 · 1 · 1 · T ·	IH		С-ніт- in hihit кіт-	
14	Inhibit lime	0.1 to 10.0s		Seming Innibit time	
1.5	A	(1)On	(0)	Setting the auto inhibit	
15	Auto Innibit	(2)Off	(2)	function	
1/		(1)Always	(1)	Setting the backlight	
10		(2)2min	(1)	illumination time	

Name	Symbol	IN/ OUT	Pin No.	Explanation
Control power	POWER	IN	11	Connection of power
suppiy voitage			12	source
Ground	E	-	10	Ground terminal
	-15	OUT	16	
	15	OUT	17	
Current	C-	IN	18	Sensor cable
JEIISOI	C+	IN	19	1
	FG	-	20	1
	U	IN	1	
Motor	V	IN	2	Motor voltage input
volidge	W	IN	3	
	b	OUT	4	1 h h h h h h
OUT 1	a	OUT	5	Lower limit output atter
001001	с	OUT	6	
	b	OUT	7	
OUL2	a	OUT	8	Higher limit output after
Colboi	с	OUT	9	
	с	OUT	13	Higher limit output at
OUT 3	a	OUT	14	instantaneous electric
001001	b	OUT	15	power

External connection/ parameter settings/ terminal functions

6. Built-in forward/reverse sequencer type TSM4000C1......For crushers

MEMO

Safety Guide and Warranty

WARNING Death or serious injury may result from product misuse due to not following the instructions.

- "Mechanical type Safety and Control devices"
- Begin inspection and maintenance after verifying that no load or rotational force is being applied to the equipment.
- Check the operation of the device periodically so that it can be sure to function properly when overload occurs.
- "Electrical type Safety and Control devices"
- When carrying out an operation test or making a periodic inspection, make sure to verify that it functions properly as a protection device.
 Follow the instruction manual when carrying out megger testing because most electrical devices have certain requirements for megger
- testing.

• Check the operation of the device periodically so that it can be sure to function properly when overloaded occurs. "Common"

- Comply with the 2-1-1 General Standard of "Ordinance on Labor Safety and Hygiene".
- When performing maintenance or inspections:
 - 1) Wear proper work clothes and protective equipment (safety devices, gloves, shoes, etc.). To avoid an accident, make sure to perform maintenance and inspections in an appropriate environment.
 - 2) Make sure the power is switched off, and the machine has stopped completely before carrying out maintenance and inspections. Take the necessary measures to ensure the power is not turned back on.
 - 3) Follow the instruction manual.
 - 4) Wire according to the technical standards of Electrical Installation and company regulations. Take note of the cautions in this manual which explain installation direction, clearance and environmental conditions. Make sure to ground the device to prevent electrical shock and to improve noise resistance.
- When using with lifting equipment, install a suitable protection device for safety purposes, otherwise an accident resulting in death, serious injury or damage to the equipment may occur due to a falling accident.

CAUTION Minor or moderate injury, as well as damage to the product may result from product misuse due to not following the instructions.

- "Mechanical type Safety and Control devices"
- The strength of the equipment should be designed to withstand the load or rotational force when the device is activated due to overload.
 Wear damage may occur depending on the number and frequency of activations. Following the manual, check the functions and operations periodically. If something is not functioning properly, contact the distributor for repair.
- "Electrical type Safety and Control devices'
- Consumable parts (tantalum electrolytic capacitors, relays, etc.) are built-in the products. Using the manual, periodically check the functions and operation of the device. If it is not functioning properly, contact the distributor for repair.
- \bullet Do not use the device in a corrosive gas environment. Sulphidizing gases (SO₂, H₂S) can especially corrode the copper and copper alloy used on PCBs and parts, and cause a malfunction.

"Common"

- Read the instruction manual carefully, and use the product properly. In case the instruction manual is not available, request one from the distributor where you purchased the product, or our sales office with the product name and model number.
- Deliver this instruction manual to the final customer who uses the Tsubaki E&M product.
- Do not reset the main unit or shaft of the shock guard by turning it by hand. Doing so is dangerous.

Warranty: Tsubaki E&M Co.: hereinafter referred to as "Seller" Customer: hereinafter referred to as "Buyer" Goods sold or supplied by Seller to Buyer: hereinafter referred to as "Goods"

1. Warranty period without charge

Effective 18 months from the date of shipment or 12 months from the first use of Goods, including the installation of the Goods to the Buyer's equipment or machine - whichever comes first.

2. Warranty coverage

Should any damage or problem with the Goods arise within the warranty period, given that the Goods were operated and maintained according to the instructions provided in the manual, the Seller will repair and replace at no charge once the Goods are returned to the Seller.

This warranty does not include the following:

- 1) Any costs related to removal of Goods from the Buyer's equipment or machine to repair or replace parts.
- 2) Cost to transport Buyer's equipment or machines to the Buyer's repair shop.
- 3) Costs to reimburse any profit loss due to any repair or damage and consequential losses caused by the Buyer.

3. Warranty with charge

- Seller will charge for any investigation and repair of Goods caused by:
- 1) Improper installation by failing to follow the instruction manual.
- Insufficient maintenance or improper operation by the Buyer.
 Incorrect installation of the Goods to other equipment or machines.
- 4) Any modifications or alterations of Goods by the Buyer.
- 5) Any repair by engineers other than the Seller or those designated by the Seller.
- 6) Operation in an environment not specified in the manual7) Force Majeure or forces beyond the Seller's control such as
- natural disasters and injustices inflicted by a third party. 8) Secondary damage or problems incurred by the Buyer's
- 9) Secondary damage or problems incurred by the Buyer's equipment or machines.
 9) Defective parts supplied or specified by the Buyer
- 9) Defective parts supplied or specified by the Buyer.
- 10) Incorrect wiring or parameter settings by the Buyer.11) The end of life cycle of the Goods under normal usag
- 11) The end of life cycle of the Goods under normal usage.12) Losses or damages not liable to the Seller.

12/ Losses of damages not hable to

Dispatch service

The service to dispatch a Seller's engineer to investigate, adjust or trial test the Seller's Goods is at the Buyer's expense.

CAUTION The contents of this catalog are mainly to aid in product selection. Read the instruction manual thoroughly before using the product in order to use it properly.

The logos and product names used in this catalog are either trademarks or registered trademarks of Tsubakimoto Chain Co. or the Tsubaki Group in Japan and other countries.

TSUBAKIMOTO CHAIN CO.

Headquarters

Nakanoshima Mitsui Building 3-3-3 Nakanoshima, Kita-ku Osaka, 530-0005, Japan Phone : +81-6-6441-0011 URL : http://tsubakimoto.com

Chain & Power Transmission Sales

1-3 Kannabidai, 1-chome Kvotanabe. Kyoto, 610-0380, Japan Phone : +81-774-64-5022

Group companies

NORTH and SOUTH AMERICA

U.S. TSUBAKI POWER TRANSMISSION, LLC 301 E. Marquardt Drive, Wheeling, IL 60090, U.S.A. Phone :+1-847-459-9500 URL : http://ustsubaki.com/

EUROPE

TSUBAKIMOTO EUROPE B.V. Aventurijn 1200, 3316 LB Dordrecht, The Netherlands Phone : +31-78-620-4000 URL : http://tsubaki.eu

000 "TSUBAKI KABELSCHLEPP"

Prospekt Andropova 18, Building 6 115432 Moscow, Russia Phone :+7-499-418212 URL : http://kabelschlepp.ru/

ASIA and OCEANIA

TAIWAN TSUBAKIMOTO CO. No. 33, Lane 17, Zihciang North Road Gueishan Township Taoyuan County Taiwan R.O.C. Phone :+886-3-3293827/8/9 URL : http://tsubakimoto.com.tw

TSUBAKIMOTO SINGAPORE PTE. LTD.

25 Gul Lane, Jurong, Singapore 629419 Phone : +65-6861-0422/3/4 URL : http://tsubaki.sg

TSUBAKI POWER TRANSMISSION

(MALAYSIA) SDN. BHD. No. 22, Jalan Astaka U8/84A Bukit Jelutong Industrial Park Section U8, 40150 Shah Alam, Selangor, Malaysia Phone : +60-3-7859-8585 URL : http://tsubaki.sg

TSUBAKIMOTO (THAILAND) CO. LTD. 388 Exchange Tower, 19th Floor Unit 1902

Sukhumyi Road, Klongtoey, Bangkok 10110, Thailand Phone : +66-2-262-0667/8/9 URL : http://tsubaki.co.th

TSUBAKI of CANADA LIMITED

1630 Drew Road, Mississauga, Ontario, L5S 1J6, Canada Phone : +1-905-676-0400 URL : http://tsubaki.ca

TSUBAKIMOTO U.K. LTD Osier Drive, Sherwood Park, Annesley, Nottingham NG15 0DX. United Kingdom Phone : +44-1623-688-700

URL : http://tsubaki.eu

TSUBAKIMOTO CHAIN (SHANGHAI) CO. LTD. Room 601, Urban City Centre, 45 Nanchang Road

Huangpu District, Shanghai 2000020, People's Republic of China Phone : +86-21-5396-6651/2 URL : http://tsubaki.cn/

TSUBAKIMOTO SINGAPORE PTE. LTD. VIETNAM REPRESENTATIVE OFFICE

H&H Building 8F, 209 Hoàng Văn Thụ Phú Nhuận District, Hồ Chí Minh City, Vietnam Phone : +84-8-3999-0131/2 URL : http://tsubaki.net.vn/

TSUBAKI AUSTRALIA PTY. LTD.

Unit E, 95-101 Silverwater Road Silverwater NSW 2128, Australia Phone :+61-02-9704-2500 URL : http://tsubaki.com.au

TSUBAKIMOTO KOREA CO., LTD. #1004/1005 East Wing, Hanshin Intervalley 24, 707-34 Yeoksam-dong, Gangnam-gu, Seoul, Korea Phone : +82-02-2183-0311 URL : http://tsubakimoto.com

TSUBAKI BRASIL EQUIPAMENTOS INDUSTRIAIS LTDA. R. Pamplona, 1018, CJ, 73/74, Jd, Paulista CEP 01405-001, São Paulo, S.P.Brazil Phone : +55-11-3253-5656 URL : http://tsubaki.ind.b

TSUBAKI DEUTSCHLAND GmbH

ASTO Park Oberpfaffenhofen, Friedrichshafener Straße 1 D-82205, Gilching, Germany Phone :+49-8105-7307100 URL : http://tsubaki.de/

TSUBAKI INDIA POWER TRANSMISSION PVT. LTD. Chandrika Chambers No.4, 3rd Floor, Anthony Stree

Royapettah, Chennai, Tamil Nadu 600014, India Phone : +91-44-4231-5251 URL : http://tsubaki.in/

PT. TSUBAKI INDONESIA TRADING

Wisma 46 - Kota BNI, 24th Floor, Suite 24.15 Visina 40 Note 2411 July 2411 Note 2

TSUBAKI AUSTRALIA PTY. LTD. NEW ZEALAND BRANCH

2 Kalmia Street, Ellerslie, Auckland 1051, New Zealand Phone : +64-275-082-726 Phone : http://tsubaki.com.au

Distributed by: